MATHM5195 EXERCISE SHEET 5
SOLUTIONS

DUE: MAY 6, 2024

Algebraic geometry, Grobner bases
Problem 1. (a) Let X C A" and Y C A" be two algebraic sets, and let
XXY={(x1,-- -, Xn, Y1, ,Ym) € A" : (x1,...,x10) € X (Y1,.--,Ym) € Y}
be their Cartesian product. Show that X x Y is an algebraic set.
(b) If both X and Y are irreducible, then is X x Y is irreducible?

Solution. (a) We may assume that X C A" is V(fi,..., fx) where f; € K[xy,...,x,] for
i=1,...,kandY C A"isV(g1,...,q) forg; € K[y, ..., ym],i=1,...,1

Notg that we can regard the f; and g; as elements in K[x1, ..., X, Y1, ..., Ym], €.g., via defin-
ing fi(x1,.. -, Xn, Y1, -, Ym) = fi(x1, ..., xp)and &i(x1, ..., X, Y1, Ym) = &i(Y1, -« Ym)-

Then W := V(f,..., i, §1,...,&) € A™"™ is an algebraic set. In the following write
shorthand (x,y) for (x1,...,Xu, Y1,...,Ym). We have

W= {(x,y) e A" : fi(x,y) =...= ilx,y) = &1 (x,y) = ... = g1(x,y) =0}
={(x,y) e A" : fi(x)=...= fi(x) =0and g1(y) = ... = g (y) = 0}
={(x,y) e A" :x € Xandy € Y} .

This shows that W = X x Y.

(b) YES. Here is a proof.

We assume that X x Y = Z; U Z; for some algebraic sets Z; and Z; C X x Y. We show that
this implies that X is reducible, a contradition:

First, for x € X the set {x} x Y is irreducible (it is in fact, isomorphic to Y). We can write

() xY = (Zin ({x} x Y))U(Za N ({x} x Y)).

Since {x} x Y isirreducible, it is either contained in Z; or in Z,. Now define X; := {x € X :
{x} xY C Z;} fori =1,2. Clearly, X = X; U X; and X; C X, since the Z; are irreducible.
It remains to show that the X; are closed.

Note that the set X x {y} either lies entirely in Z; or in Z, for any y € Y (see this like above,
or alternatively, by showing that X x {y} = Z; N (A" x {y}) fori =1 or i = 2). So the set
Zin(Xx{y})={xe X:(x,y) C Z}isclosed forany y € Y.
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Consider the isomorphism ¢ : X — X x {y}. This is a morphism of affine algebraic
varieties and one can show that it is continuous (see e.g., Ravi Vakil’s lecture notes: https:
//math.stanford.edu/~vakil/725/class4.pdf ).

Then ¢ 1(Z;N (X x {y})) = X; is closed in X (as the preimage of a closed set is closed).

Problem 2. (a) Show (by an example) that an infinite union of algebraic sets is not neces-
sarily an algebraic set.

(b) Give an example of a maximal ideal | in R[xy, ..., x,] such that V(]) = @. Why does
this not contradict the Nullstellensatz?

Solution. (a) Consider AL. Then each z € Z is an algebraic subset of Ak: {z} = V(x —z),
where x —z € R[x]. But Z = {J,cy V(x — z) is not an algebraic subset of AL, since if
there was a polynomial f € R[x] vanishing on every integer, it would have deg(f) = oo.
Contradiction.

(b) Let ] = (x> +1). Then ] is maximal because R[x]/] = C is a field. But f(x) =
x?2+1 > 0 for any x € R. This does not contradict the Nullstellensatz because R is not an
algebraically closed field.

Problem 3. (a) Determine the cardinality of V(f) where f(z) = z° —z* + 23 — 1is in C[z]
and compare it to dim¢ (C[z]/(z° — z* + 2% — 1)) (dimension here means vector space
dimension).

(b) Same question for V(x — 2y, y*> — x* + x? + x) and dim¢ (C[x, y] / (x — 2y, y> — x> + 22 +
x). Geometric interpretation?
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(c) Same question for V (x® —yz,y? — xz,z* — x?y) and dim¢ (C[x, y, z] / (x® — yz, y* — xz,2> —
x%y). (Hint: Recall that dim¢ (C[#]) = co and so also for any C-module containing C|#])

Solution. (a) Since f is a complex polynomial, it has exactly 5 zeros. A computation (e.g. in
Maple) shows that all five zeros are different. On the other hand C|z|/ (z° — 24423 — 1) =
Cz* @ Cz® @ Cz2 & Cz & C, so its vector space dimension is also 5.

(b) In order to get V(x — 2y, y* — x° + x% + x), we solve the system of equations x = 2y and
y?> — x% + x%2 + x = 0. Substituting the first equation into the second one, we see that x is

one of the three values: x; =0, x, =5/2+ @ orx3=5/2— @.
So we get that

V(r—2,42— ¥+ +x) = {000 U{(5/2+ Y2 ? V29 V29

T'5/4+ )}U{(5/2_7’5/4_T)}‘

1%

Similarly as above we see that C[x, ]/ (x — 2y, y> — x> + x>+ x) = C[x]/(x® —5/4x% — x)
Cx? & Cx @ C. So again the two numbers are equal.

(c) For V(x® — yz,y? — xz,2z* — x*y) we can check that all points of the form (#3,#4,t°) for

any t € C are contained in this algebraic set.
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We can find the surjective ring homomorphism ¢ : C[x,y,z] — C[f,t* 7] that sends
x = e thz e 1,

A computation shows that I = (x> — yz,y? — xz,2%> — x?y) is contained in the ideal ker ¢
(one can show that the two ideals are equal!). This means that C[x, y, z]/ ker ¢ C C|[x,y,z]/1.
But by the homomorphism theorem one has C|x, y, z] / ker ¢ = C[t3, 4, °], thus C[x,y, z] /I
contains the ring C[t3, 4, £°].

But this ring contains the ring C[t?], which has infinite dimension as a C-vector space. So
the cardinality of V (x® — yz,y? — xz,2% — x%y) is infinity.

Problem 4. (a) Fix a monomial order on IN® and let K = C. Are the polynomials P; =
x® —yz, P, = x?y — z% and P5 = y? — z% a Grobner basis with respect to this order?

(b) If not, then complete the polynomials to a Grobner basis.

(c) Does the system of equations P;(x,y,z) = P2(x,y,z) = P3(x,y,z) = 0 have a solution?
(Try to answer this question without actaully calculating one!)

Solution. (a) Define a linear order by A = (?, 34ﬁ' 1). This is a linear order because the

components v/2,+/3, 1 are in R and they are Q-linearly independent (see this by assuming
that there exists a dependence relation

6]1\[3-%(12\@-}-!]3:0,

with g; € Q (we absorbed the fractions into g;!). Clearing denominators, we may assume

that g; € Z. Assume that g, # 0 (the argument goes similar for g1, 43), then we may

73393 +2v34145
0

this equation in the form 2¢143v/3 = ... € Q. This can only hold if either g; = 0 or

g3 = 0. Plugging q; = 0 into the original equation yields /2 € Q, which is a contradiction.

write /2 = _%;72[3%. Squaring this equation yields 2 = . Now rewrite

Similarly, g3 = 0 would mean that \/g € Q, also a contradiction. This shows that A defines

a linear order.)
Thenlm, (P;) = x3,1m, (P,) = z%,and Im, (P;) = . Then Sy = x°y — yz* = x?yP; —yzP,,

thus S, ™) = 0. Similarly: Sy = 227 — 25 = 22P, + x%yPs and Si3 = —1Pz + 2° +

x3z2 = z2P; — yzP,. Thus by Buchberger’s criterion, the P; form a Grébner basis with
respect to A.

Note: One can show that if the leading monomials (with respect to a chosen monomial
order) of a collection of polynomials Py, ..., Py do not have any nontrivial factors in com-
mon, then the Py, . . ., Py already form a Grobner basis with respect to the chosen monomial
order.

(b) If we had chosen another monomial order, e.g. lex with z > y > x, then we see that
Imy (P1) = yz, Imyey (Py) = 23 and Imy,, (P;) = z2. Using the notation from the lecture, we
have Fy = {Py, P, P;}. Then we get the S-polynomials: S5 = x3y? — x2y?, S13 = x°z — °
and Sp3 = x%y — x%y. One immediately sees that S1p = ySa3. Thus F; = {P;, P,, P5, Py =

S13, Ps = S3}. Calculating S-polynomials again, we only get one new one: S5 = x® — x°.
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Calculating S-polynomials again, we find that all of them reduce to 0 by division through
F,. Thus F; is a Grobner basis with respect to lex.

(c) For this we have to determine whether 1 € (P, P,, P3). Using the monomial order from
(a), we easily see that 1 is not contained in this ideal and thus there is a solution of the
system of polynomial equations. (One easily sees that (0,0,0) is one of the solutions!)



