
MATHM5195 EXERCISE SHEET 5
SOLUTIONS

DUE: MAY 6, 2024

Algebraic geometry, Gröbner bases

Problem 1. (a) Let X ⊂ An and Y ⊂ Am be two algebraic sets, and let

X × Y = {(x1, . . . , xn, y1, . . . , ym) ∈ An+m : (x1, . . . , xn) ∈ X (y1, . . . , ym) ∈ Y}

be their Cartesian product. Show that X × Y is an algebraic set.

(b) If both X and Y are irreducible, then is X × Y is irreducible?

Solution. (a) We may assume that X ⊂ An is V( f1, . . . , fk) where fi ∈ K[x1, . . . , xn] for
i = 1, . . . , k and Y ⊂ Am is V(g1, . . . , gl) for gi ∈ K[y1, . . . , ym], i = 1, . . . , l.

Note that we can regard the fi and gi as elements in K[x1, . . . , xn, y1, . . . , ym], e.g., via defin-
ing f̃i(x1, . . . , xn, y1, . . . , ym) := fi(x1, . . . , xn) and g̃i(x1, . . . , xn, y1, . . . , ym) := gi(y1, . . . , ym).

Then W := V( f̃1, . . . , f̃k, g̃1, . . . , g̃l) ⊆ An+m is an algebraic set. In the following write
shorthand (x, y) for (x1, . . . , xn, y1, . . . , ym). We have

W = {(x, y) ∈ An+m : f̃1(x, y) = . . . = f̃k(x, y) = g̃1(x, y) = . . . = g̃l(x, y) = 0}
= {(x, y) ∈ An+m : f1(x) = . . . = fk(x) = 0 and g1(y) = . . . = gl(y) = 0}
= {(x, y) ∈ An+m : x ∈ X and y ∈ Y} .

This shows that W = X × Y.

(b) YES. Here is a proof.

We assume that X ×Y = Z1 ∪ Z2 for some algebraic sets Zi and Zi ⊊ X ×Y. We show that
this implies that X is reducible, a contradition:

First, for x ∈ X the set {x} × Y is irreducible (it is in fact, isomorphic to Y). We can write

{x} × Y = (Z1 ∩ ({x} × Y)) ∪ (Z2 ∩ ({x} × Y)).

Since {x}×Y is irreducible, it is either contained in Z1 or in Z2. Now define Xi := {x ∈ X :
{x} × Y ⊆ Zi} for i = 1, 2. Clearly, X = X1 ∪ X2 and Xi ⊊ X, since the Zi are irreducible.
It remains to show that the Xi are closed.

Note that the set X ×{y} either lies entirely in Z1 or in Z2 for any y ∈ Y (see this like above,
or alternatively, by showing that X × {y} = Zi ∩ (An × {y}) for i = 1 or i = 2). So the set
Zi ∩ (X × {y}) = {x ∈ X : (x, y) ⊂ Zi} is closed for any y ∈ Y.
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Consider the isomorphism φ : X −→ X × {y}. This is a morphism of affine algebraic
varieties and one can show that it is continuous (see e.g., Ravi Vakil’s lecture notes: https:
//math.stanford.edu/~vakil/725/class4.pdf ).

Then φ−1(Zi ∩ (X × {y})) = Xi is closed in X (as the preimage of a closed set is closed).

Problem 2. (a) Show (by an example) that an infinite union of algebraic sets is not neces-
sarily an algebraic set.

(b) Give an example of a maximal ideal J in R[x1, . . . , xn] such that V(J) = ∅. Why does
this not contradict the Nullstellensatz?

Solution. (a) Consider A1
R. Then each z ∈ Z is an algebraic subset of A1

R: {z} = V(x − z),
where x − z ∈ R[x]. But Z =

⋃
z∈Z V(x − z) is not an algebraic subset of A1

R, since if
there was a polynomial f ∈ R[x] vanishing on every integer, it would have deg( f ) = ∞.
Contradiction.

(b) Let J = ⟨x2 + 1⟩. Then J is maximal because R[x]/J ∼= C is a field. But f (x) =
x2 + 1 > 0 for any x ∈ R. This does not contradict the Nullstellensatz because R is not an
algebraically closed field.

Problem 3. (a) Determine the cardinality of V( f ) where f (z) = z5 − z4 + z3 − 1 is in C[z]
and compare it to dimC(C[z]/⟨z5 − z4 + z3 − 1⟩) (dimension here means vector space
dimension).

(b) Same question for V(x − 2y, y2 − x3 + x2 + x) and dimC(C[x, y]/⟨x − 2y, y2 − x3 + x2 +
x⟩. Geometric interpretation?

(c) Same question for V(x3 − yz, y2 − xz, z2 − x2y) and dimC(C[x, y, z]/⟨x3 − yz, y2 − xz, z2 −
x2y⟩. (Hint: Recall that dimC(C[t]) = ∞ and so also for any C-module containing C[t])

Solution. (a) Since f is a complex polynomial, it has exactly 5 zeros. A computation (e.g. in
Maple) shows that all five zeros are different. On the other hand C[z]/⟨z5 − z4 + z3 − 1⟩ ∼=
Cz4 ⊕ Cz3 ⊕ Cz2 ⊕ Cz ⊕ C, so its vector space dimension is also 5.

(b) In order to get V(x − 2y, y2 − x3 + x2 + x), we solve the system of equations x = 2y and
y2 − x3 + x2 + x = 0. Substituting the first equation into the second one, we see that x is
one of the three values: x1 = 0, x2 = 5/2 +

√
29
2 or x3 = 5/2 −

√
29
2 .

So we get that

V(x− 2y, y2 − x3 + x2 + x) = {(0, 0}∪{(5/2+

√
29
2

, 5/4+

√
29
4

)}∪{(5/2−
√

29
2

, 5/4−
√

29
4

)} .

Similarly as above we see that C[x, y]/⟨x− 2y, y2 − x3 + x2 + x⟩ ∼= C[x]/⟨x3 − 5/4x2 − x⟩ ∼=
Cx2 ⊕ Cx ⊕ C. So again the two numbers are equal.

(c) For V(x3 − yz, y2 − xz, z2 − x2y) we can check that all points of the form (t3, t4, t5) for
any t ∈ C are contained in this algebraic set.
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We can find the surjective ring homomorphism φ : C[x, y, z] −→ C[t3, t4, t5] that sends
x 7→ t3, y 7→ t4, z 7→ t5.

A computation shows that I = ⟨x3 − yz, y2 − xz, z2 − x2y⟩ is contained in the ideal ker φ
(one can show that the two ideals are equal!). This means that C[x, y, z]/ ker φ ⊆ C[x, y, z]/I.
But by the homomorphism theorem one has C[x, y, z]/ ker φ ∼= C[t3, t4, t5], thus C[x, y, z]/I
contains the ring C[t3, t4, t5].

But this ring contains the ring C[t3], which has infinite dimension as a C-vector space. So
the cardinality of V(x3 − yz, y2 − xz, z2 − x2y) is infinity.

Problem 4. (a) Fix a monomial order on N3 and let K = C. Are the polynomials P1 =
x3 − yz, P2 = x2y − z3 and P3 = y2 − z2 a Gröbner basis with respect to this order?

(b) If not, then complete the polynomials to a Gröbner basis.

(c) Does the system of equations P1(x, y, z) = P2(x, y, z) = P3(x, y, z) = 0 have a solution?
(Try to answer this question without actaully calculating one!)

Solution. (a) Define a linear order by λ = (
√

3
2 , 3

√
2

4 , 1). This is a linear order because the
components

√
2,
√

3, 1 are in R+ and they are Q-linearly independent (see this by assuming
that there exists a dependence relation

q1
√

3 + q2
√

2 + q3 = 0 ,

with qi ∈ Q (we absorbed the fractions into qi!). Clearing denominators, we may assume
that qi ∈ Z. Assume that q2 ̸= 0 (the argument goes similar for q1, q3), then we may

write
√

2 = −q3−
√

3q1
q2

. Squaring this equation yields 2 =
q2

3+3q2
1+2

√
3q1q3

q2
2

. Now rewrite

this equation in the form 2q1q3
√

3 = . . . ∈ Q. This can only hold if either q1 = 0 or
q3 = 0. Plugging q1 = 0 into the original equation yields

√
2 ∈ Q, which is a contradiction.

Similarly, q3 = 0 would mean that
√

2
3 ∈ Q, also a contradiction. This shows that λ defines

a linear order.)
Then lmλ(P1) = x3, lmλ(P2) = z3, and lmλ(P3) = y2. Then S12 = x5y− yz4 = x2yP1 − yzP2,

thus S12
(P1,P2,P3) = 0. Similarly: S23 = x2y3 − z5 = z2P2 + x2yP3 and S13 = −y3z + x3 +

x3z2 = z2P1 − yzP2. Thus by Buchberger’s criterion, the Pi form a Gröbner basis with
respect to λ.

Note: One can show that if the leading monomials (with respect to a chosen monomial
order) of a collection of polynomials P1, . . . , Pk do not have any nontrivial factors in com-
mon, then the P1, . . . , Pk already form a Gröbner basis with respect to the chosen monomial
order.

(b) If we had chosen another monomial order, e.g. lex with z > y > x, then we see that
lmlex(P1) = yz, lmlex(P2) = z3 and lmlex(P3) = z2. Using the notation from the lecture, we
have F0 = {P1, P2, P3}. Then we get the S-polynomials: S12 = x3y2 − x2y2, S13 = x3z − y3

and S23 = x2y − x3y. One immediately sees that S12 = yS23. Thus F1 = {P1, P2, P3, P4 =
S13, P5 = S23}. Calculating S-polynomials again, we only get one new one: S15 = x6 − x5.
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Calculating S-polynomials again, we find that all of them reduce to 0 by division through
F1. Thus F1 is a Gröbner basis with respect to lex.

(c) For this we have to determine whether 1 ∈ ⟨P1, P2, P3⟩. Using the monomial order from
(a), we easily see that 1 is not contained in this ideal and thus there is a solution of the
system of polynomial equations. (One easily sees that (0, 0, 0) is one of the solutions!)


