MATHM5195 EXERCISE SHEET 5

 SOLUTIONS

 SOLUTIONS}

DUE: MAY 6, 2024

Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be two algebraic sets, and let

$$
X \times Y=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathbb{A}^{n+m}:\left(x_{1}, \ldots, x_{n}\right) \in X\left(y_{1}, \ldots, y_{m}\right) \in Y\right\}
$$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.
(b) If both X and Y are irreducible, then is $X \times Y$ is irreducible?

Solution. (a) We may assume that $X \subset \mathbb{A}^{n}$ is $V\left(f_{1}, \ldots, f_{k}\right)$ where $f_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$ for $i=1, \ldots, k$ and $Y \subset \mathbb{A}^{m}$ is $V\left(g_{1}, \ldots, g_{l}\right)$ for $g_{i} \in K\left[y_{1}, \ldots, y_{m}\right], i=1, \ldots, l$.

Note that we can regard the f_{i} and g_{i} as elements in $K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$, e.g., via defining $\tilde{f}_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=f_{i}\left(x_{1}, \ldots, x_{n}\right)$ and $\tilde{g}_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=g_{i}\left(y_{1}, \ldots, y_{m}\right)$.

Then $W:=V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}, \tilde{g}_{1}, \ldots, \tilde{g}_{l}\right) \subseteq \mathbb{A}^{n+m}$ is an algebraic set. In the following write shorthand (x, y) for $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$. We have

$$
\begin{aligned}
W & =\left\{(x, y) \in \mathbb{A}^{n+m}: \tilde{f}_{1}(x, y)=\ldots=\tilde{f}_{k}(x, y)=\tilde{g}_{1}(x, y)=\ldots=\tilde{g}_{l}(x, y)=0\right\} \\
& =\left\{(x, y) \in \mathbb{A}^{n+m}: f_{1}(x)=\ldots=f_{k}(x)=0 \text { and } g_{1}(y)=\ldots=g_{l}(y)=0\right\} \\
& =\left\{(x, y) \in \mathbb{A}^{n+m}: x \in X \text { and } y \in Y\right\} .
\end{aligned}
$$

This shows that $W=X \times Y$.
(b) YES. Here is a proof.

We assume that $X \times Y=Z_{1} \cup Z_{2}$ for some algebraic sets Z_{i} and $Z_{i} \subsetneq X \times Y$. We show that this implies that X is reducible, a contradition:

First, for $x \in X$ the set $\{x\} \times Y$ is irreducible (it is in fact, isomorphic to Y). We can write

$$
\{x\} \times Y=\left(Z_{1} \cap(\{x\} \times Y)\right) \cup\left(Z_{2} \cap(\{x\} \times Y)\right)
$$

Since $\{x\} \times Y$ is irreducible, it is either contained in Z_{1} or in Z_{2}. Now define $X_{i}:=\{x \in X$: $\left.\{x\} \times Y \subseteq Z_{i}\right\}$ for $i=1,2$. Clearly, $X=X_{1} \cup X_{2}$ and $X_{i} \subsetneq X$, since the Z_{i} are irreducible. It remains to show that the X_{i} are closed.

Note that the set $X \times\{y\}$ either lies entirely in Z_{1} or in Z_{2} for any $y \in Y$ (see this like above, or alternatively, by showing that $X \times\{y\}=Z_{i} \cap\left(\mathbb{A}^{n} \times\{y\}\right)$ for $i=1$ or $\left.i=2\right)$. So the set $Z_{i} \cap(X \times\{y\})=\left\{x \in X:(x, y) \subset Z_{i}\right\}$ is closed for any $y \in Y$.

Consider the isomorphism $\varphi: X \rightarrow X \times\{y\}$. This is a morphism of affine algebraic varieties and one can show that it is continuous (see e.g., Ravi Vakil's lecture notes: https: //math.stanford.edu/~vakil/725/class4.pdf).

Then $\varphi^{-1}\left(Z_{i} \cap(X \times\{y\})\right)=X_{i}$ is closed in X (as the preimage of a closed set is closed).

Problem 2. (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
(b) Give an example of a maximal ideal J in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $V(J)=\varnothing$. Why does this not contradict the Nullstellensatz?

Solution. (a) Consider $\mathbb{A}_{\mathbb{R}}^{1}$. Then each $z \in \mathbb{Z}$ is an algebraic subset of $\mathbb{A}_{\mathbb{R}}^{1}:\{z\}=V(x-z)$, where $x-z \in \mathbb{R}[x]$. But $\mathbb{Z}=\bigcup_{z \in \mathbb{Z}} V(x-z)$ is not an algebraic subset of $\mathbb{A}_{\mathbb{R}}^{1}$, since if there was a polynomial $f \in \mathbb{R}[x]$ vanishing on every integer, it would have $\operatorname{deg}(f)=\infty$. Contradiction.
(b) Let $J=\left\langle x^{2}+1\right\rangle$. Then J is maximal because $\mathbb{R}[x] / J \cong \mathbb{C}$ is a field. But $f(x)=$ $x^{2}+1>0$ for any $x \in \mathbb{R}$. This does not contradict the Nullstellensatz because \mathbb{R} is not an algebraically closed field.

Problem 3. (a) Determine the cardinality of $V(f)$ where $f(z)=z^{5}-z^{4}+z^{3}-1$ is in $\mathbb{C}[z]$ and compare it to $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[z] /\left\langle z^{5}-z^{4}+z^{3}-1\right\rangle\right)$ (dimension here means vector space dimension).
(b) Same question for $V\left(x-2 y, y^{2}-x^{3}+x^{2}+x\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y] /\left\langle x-2 y, y^{2}-x^{3}+x^{2}+\right.\right.$ $x\rangle$. Geometric interpretation?
(c) Same question for $V\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y, z] /\left\langle x^{3}-y z, y^{2}-x z, z^{2}-\right.\right.$ $\left.x^{2} y\right\rangle$. (Hint: Recall that $\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[t])=\infty$ and so also for any \mathbb{C}-module containing $\mathbb{C}[t]$)

Solution. (a) Since f is a complex polynomial, it has exactly 5 zeros. A computation (e.g. in Maple) shows that all five zeros are different. On the other hand $\mathbb{C}[z] /\left\langle z^{5}-z^{4}+z^{3}-1\right\rangle \cong$ $\mathbb{C} z^{4} \oplus \mathbb{C} z^{3} \oplus \mathbb{C} z^{2} \oplus \mathbb{C} z \oplus \mathbb{C}$, so its vector space dimension is also 5 .
(b) In order to get $V\left(x-2 y, y^{2}-x^{3}+x^{2}+x\right)$, we solve the system of equations $x=2 y$ and $y^{2}-x^{3}+x^{2}+x=0$. Substituting the first equation into the second one, we see that x is one of the three values: $x_{1}=0, x_{2}=5 / 2+\frac{\sqrt{29}}{2}$ or $x_{3}=5 / 2-\frac{\sqrt{29}}{2}$.

So we get that
$V\left(x-2 y, y^{2}-x^{3}+x^{2}+x\right)=\left\{(0,0\} \cup\left\{\left(5 / 2+\frac{\sqrt{29}}{2}, 5 / 4+\frac{\sqrt{29}}{4}\right)\right\} \cup\left\{\left(5 / 2-\frac{\sqrt{29}}{2}, 5 / 4-\frac{\sqrt{29}}{4}\right)\right\}\right.$.
Similarly as above we see that $\mathbb{C}[x, y] /\left\langle x-2 y, y^{2}-x^{3}+x^{2}+x\right\rangle \cong \mathbb{C}[x] /\left\langle x^{3}-5 / 4 x^{2}-x\right\rangle \cong$ $\mathbb{C} x^{2} \oplus \mathbb{C} x \oplus \mathbb{C}$. So again the two numbers are equal.
(c) For $V\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)$ we can check that all points of the form $\left(t^{3}, t^{4}, t^{5}\right)$ for any $t \in \mathbb{C}$ are contained in this algebraic set.

We can find the surjective ring homomorphism $\varphi: \mathbb{C}[x, y, z] \rightarrow \mathbb{C}\left[t^{3}, t^{4}, t^{5}\right]$ that sends $x \mapsto t^{3}, y \mapsto t^{4}, z \mapsto t^{5}$.

A computation shows that $I=\left\langle x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right\rangle$ is contained in the ideal $\operatorname{ker} \varphi$ (one can show that the two ideals are equal!). This means that $\mathbb{C}[x, y, z] / \operatorname{ker} \varphi \subseteq \mathbb{C}[x, y, z] / I$. But by the homomorphism theorem one has $\mathbb{C}[x, y, z] / \operatorname{ker} \varphi \cong \mathbb{C}\left[t^{3}, t^{4}, t^{5}\right]$, thus $\mathbb{C}[x, y, z] / I$ contains the ring $\mathbb{C}\left[t^{3}, t^{4}, t^{5}\right]$.

But this ring contains the ring $\mathbb{C}\left[t^{3}\right]$, which has infinite dimension as a \mathbb{C}-vector space. So the cardinality of $V\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)$ is infinity.

Problem 4. (a) Fix a monomial order on \mathbb{N}^{3} and let $K=\mathbb{C}$. Are the polynomials $P_{1}=$ $x^{3}-y z, P_{2}=x^{2} y-z^{3}$ and $P_{3}=y^{2}-z^{2}$ a Gröbner basis with respect to this order?
(b) If not, then complete the polynomials to a Gröbner basis.
(c) Does the system of equations $P_{1}(x, y, z)=P_{2}(x, y, z)=P_{3}(x, y, z)=0$ have a solution? (Try to answer this question without actaully calculating one!)

Solution. (a) Define a linear order by $\lambda=\left(\frac{\sqrt{3}}{2}, \frac{3 \sqrt{2}}{4}, 1\right)$. This is a linear order because the components $\sqrt{2}, \sqrt{3}, 1$ are in \mathbb{R}_{+}and they are \mathbb{Q}-linearly independent (see this by assuming that there exists a dependence relation

$$
q_{1} \sqrt{3}+q_{2} \sqrt{2}+q_{3}=0,
$$

with $q_{i} \in \mathbb{Q}$ (we absorbed the fractions into $q_{i}!$). Clearing denominators, we may assume that $q_{i} \in \mathbb{Z}$. Assume that $q_{2} \neq 0$ (the argument goes similar for q_{1}, q_{3}), then we may write $\sqrt{2}=\frac{-q_{3}-\sqrt{3} q_{1}}{q_{2}}$. Squaring this equation yields $2=\frac{q_{3}^{2}+3 q_{1}^{2}+2 \sqrt{3} q_{1} q_{3}}{q_{2}^{2}}$. Now rewrite this equation in the form $2 q_{1} q_{3} \sqrt{3}=\ldots \in \mathbb{Q}$. This can only hold if either $q_{1}=0$ or $q_{3}=0$. Plugging $q_{1}=0$ into the original equation yields $\sqrt{2} \in \mathbb{Q}$, which is a contradiction. Similarly, $q_{3}=0$ would mean that $\sqrt{\frac{2}{3}} \in \mathbb{Q}$, also a contradiction. This shows that λ defines a linear order.)
Then $\operatorname{lm}_{\lambda}\left(P_{1}\right)=x^{3}, \operatorname{lm}_{\lambda}\left(P_{2}\right)=z^{3}$, and $\operatorname{lm}_{\lambda}\left(P_{3}\right)=y^{2}$. Then $S_{12}=x^{5} y-y z^{4}=x^{2} y P_{1}-y z P_{2}$, thus ${\overline{S_{12}}}^{\left(P_{1}, P_{2}, P_{3}\right)}=0$. Similarly: $S_{23}=x^{2} y^{3}-z^{5}=z^{2} P_{2}+x^{2} y P_{3}$ and $S_{13}=-y^{3} z+x^{3}+$ $x^{3} z^{2}=z^{2} P_{1}-y z P_{2}$. Thus by Buchberger's criterion, the P_{i} form a Gröbner basis with respect to λ.

Note: One can show that if the leading monomials (with respect to a chosen monomial order) of a collection of polynomials P_{1}, \ldots, P_{k} do not have any nontrivial factors in common, then the P_{1}, \ldots, P_{k} already form a Gröbner basis with respect to the chosen monomial order.
(b) If we had chosen another monomial order, e.g. lex with $z>y>x$, then we see that $\operatorname{lm}_{\text {lex }}\left(P_{1}\right)=y z, \operatorname{lm}_{\text {lex }}\left(P_{2}\right)=z^{3}$ and $\operatorname{lm}_{\text {lex }}\left(P_{3}\right)=z^{2}$. Using the notation from the lecture, we have $F_{0}=\left\{P_{1}, P_{2}, P_{3}\right\}$. Then we get the S-polynomials: $S_{12}=x^{3} y^{2}-x^{2} y^{2}, S_{13}=x^{3} z-y^{3}$ and $S_{23}=x^{2} y-x^{3} y$. One immediately sees that $S_{12}=y S_{23}$. Thus $F_{1}=\left\{P_{1}, P_{2}, P_{3}, P_{4}=\right.$ $\left.S_{13}, P_{5}=S_{23}\right\}$. Calculating S-polynomials again, we only get one new one: $S_{15}=x^{6}-x^{5}$.

Calculating S-polynomials again, we find that all of them reduce to 0 by division through F_{1}. Thus F_{1} is a Gröbner basis with respect to lex.
(c) For this we have to determine whether $1 \in\left\langle P_{1}, P_{2}, P_{3}\right\rangle$. Using the monomial order from (a), we easily see that 1 is not contained in this ideal and thus there is a solution of the system of polynomial equations. (One easily sees that ($0,0,0$) is one of the solutions!)

