
MATH3195/5195M EXERCISE SHEET 3
SOLUTIONS

DUE: MARCH 11, 2024

Problem 1. (a) Let R = Q[[x, y]] and let J = ⟨xy + y3, x + x2y, xy + 3y, x4 − 5y2 + x2y⟩ be an
ideal in R. Show that J is minimally generated by two elements in R.

(b) Let R = K[t] and consider M = K[t, t−1] as R-module and let I = tR be an ideal in R.
Show that M = IM but M ̸= 0. Why does this example not contradict Nakayama’s
lemma?

Solution. (a) Use the Nakayama lemma to show that J = m = ⟨x, y⟩: the lemma says that if
for a finitely generated R-module M and a submodule N ⊆ M and an ideal I ⊆ J(R) one has
the equality M = N + IM, then N = M.

In this example R is a local ring with maximal ideal m, thus we have m = J(R). Clearly
J ⊆ m.

We show that m = J +mm, then by Nakayama’s lemma it follows that m = J: first calculate
m2 = ⟨x2, xy, y2⟩. Then

J +m2 = xy + y3, x + x2y, xy + 3y, x4 − 5y2 + x2, x2, xy, y2⟩ = ⟨x, 3y⟩ ,

which is equal to m, since 3 ∈ Q∗.

For the minimal number of generators we can use the third version of Nakayama’s lemma:
(R,m) is a local ring and m/m2 ∼= Qx ⊕ Qy as a R/m ∼= Q-vector space. So x and y form a
basis of this vector space and Nakayama’s lemma allows to conclude that hey are a minimal
set of generators of m.

(b) First calculate IM: these are all elements of the form f (t)tg(t, t−1), where f (t) ∈ R,
g(t, t−1) ∈ M.

Clearly this element is again a polynomial in t and t−1, so is contained in M.

On the other hand, it is also clear that M ⊆ IM, since any element g(t, t−1) of M can be
written as t(t−1g(t, t−1)), with (t−1g(t, t−1)) ∈ M.

Thus we have IM = M.

There are various conditions of Nakayama’s lemma that are not satisfied: I is not a subset of
J(R) = ⟨0⟩. Also, M is not finitely generated as an R-module (as R-module, M = R + Rt−1 +
Rt−2 + · · · . Note that this is not a direct sum!).

Problem 2. Prove the isomorphism theorems for modules.

Solution. Note that solution includes the proofs of all isomorphism theorems for your refer-
ence.
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(1) Use the notation from the lecture: let ϕ : M −→ N be an R-module homomorphism.
Define a map ϕ̃ : M/ ker ϕ → imϕ by

ϕ̃(m + ker ϕ) = ϕ(m).

• (Well defined) If m + ker ϕ = m′ + ker ϕ, then m − m′ ∈ ker ϕ. So ϕ̃(m + ker ϕ) =
ϕ(m)− ϕ(m − m′) = ϕ(m′) = ϕ̃(m′ + ker ϕ).

• (R-homomorphism) ϕ̃(r(m + ker ϕ) + s(n + ker ϕ)) = ϕ̃((rm + sn) + ker ϕ) =
ϕ(rm + sn) = rϕ(m) + sϕ(n) = rϕ̃(m + ker ϕ) + sϕ(n + ker ϕ).

• (Injective) If ϕ(m + ker ϕ) = 0 then ϕ(m) = 0, so m ∈ ker ϕ and m + ker ϕ = 0.

• (Surjective) Clear.

So ϕ̃ is an R-isomorphism.

(2) Here assume that M ⊇ N ⊇ L are R-modules. Define a map ϕ : M/L → M/N by

ϕ(m + L) = m + N.

• (Well defined) If m + L = m′ + L, then m − m′ ∈ L ⊂ N, so m + N = m′ + N.

• (R-homomorphism) ϕ(r(m + L) + r′(m′ + L)) = ϕ((rm + r′m′) + L) = (rm +
r′m′) + N = r(m + N) + r′(m′ + N) = rϕ(m + L) + r′ϕ(m′ + L).

• (Kernel) m + L ∈ ker ϕ ⇐⇒ ϕ(m + L) = 0 ⇐⇒ m + N = 0 ⇐⇒ m ∈ N ⇐⇒
m + L ∈ N/L.

• (Image) Clearly ϕ is surjective.

So by (i), ϕ̃ defines an isomorphism (M/L)/(N/L) ∼= (M/N).

(3) Define ϕ : M → (M + L)/L by

ϕ(m) → m + L

. (Note that m ∈ M ⊂ M + L).
• (R-homomorphism) ϕ(rm + sn) = (rm + sn) + L = r(m + L) + s(n + L) =

rϕ(m) + sϕ(n).

• (Kernel) m ∈ ker ϕ ⇐⇒ ϕ(m) = 0 ⇐⇒ m + L = 0 ⇐⇒ m ∈ L ⇐⇒ m ∈
M ∩ L.

• (Image) Let (m + ℓ) + L in (M + L)/L. Then (m + ℓ) − m ∈ L, so m + L =
(m + ℓ) + L. Now ϕ(m) = m + L = (m + ℓ) + L, so ϕ is surjective.

By (i), ϕ̃ defines an isomorphism M/(M ∩ L) ∼= (M + L)/L.



MATH3195/5195M EXERCISE SHEET 3 SOLUTIONS 3

Problem 3. Prove the 3 × 3-lemma: Let R be a ring. Assume that
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is a commutative diagram of R-modules and all columns and the middle row is exact. Show
that the top row is exact if and only if the bottom row is exact.

Solution. (a) Use the snake lemma: First assume that the top row is exact. Then since the
diagram commutes and the second row is exact, the snake lemma yields the exact sequence:

0 −→ ker( f1) −→ ker( f2) −→ ker( f3) −→ coker( f1) −→ coker( f2) −→ coker( f3) −→ 0 .

Since the i-th column is exact, ker( fi) = 0 and coker( fi) ∼= Ci for i = 1, 2, 3. Thus the above
exact sequence becomes the short exact sequence

0 −→ C1 −→ C2 −→ C3 −→ 0 ,

which had to be shown.

Similarly, if the bottom row is exact, the snake lemma gives us the exact sequence

0 −→ ker(g1) −→ ker(g2) −→ ker(g3) −→ coker(g1) −→ coker(g2) −→ coker(g3) −→ 0 .

Since the i-th column is exact, ker(gi) = Ai and coker(gi) ∼= 0 for i = 1, 2, 3. This simplifies
to the short exact sequence

0 −→ A1 −→ A2 −→ A3 −→ 0 ,
which had to be shown.

Problem 4. (Localisation of a module) Let R be a ring and A ⊂ R be multiplicatively closed.
Let M be an R-module. Assume we know that (m, a) ∼ (n, b) if and only if mbc = nac for
some c ∈ A defines an equivalence relation on M × A.

(a) Writing A−1M for the set of equivalence classes of ∼, and m
a for the class containing

(m, a), show that the operation
m
a
+

n
b
=

bm + an
ab

is well defined and hence that A−1M is an abelian group.
(b) By defining an appropriate multiplication rule, show that A−1M has the structure of an

A−1R-module.
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Solution. (a) It suffices to prove the result for m′

a′ = m
a . Then we have c ∈ A such that

m′ac = ma′c. Now m′

a′ +
n
b = bm′+a′n

a′b , but

(bm′ + a′n)(ab)c = (m′ac)b2 + aa′bcn = (ma′c)b2 + aa′bcn = (bm + an)(a′b)c

so each sum is equal to the same class, so the addition is well defined. Associativity is
clear by associativity of M, the inverse of m

a is −m
a and the identity is 0

1 .

(b) We define r
a

m
b = rm

ab . It is easy to then check that this is a module.

Problem 5. Let R be a ring and A ⊂ R be multiplicatively closed.

(a) Suppose that ϕ : M → N is a homomorphism of R modules. Show ϕ induces an A−1R-
homomorphism A−1M → A−1N.

(b) Suppose 0 → L → M → N → 0 is an exact sequence of R-modules. Show that 0 →
A−1L → A−1M → A−1N → 0, with the induced maps from (i), is an exact sequence
of A−1R-modules. (Remark: This means that localization is an exact functor from the
category of R-modules to the category of A−1R-modules)

Solution. (a) We define ϕ̃ : A−1M → A−1N by

ϕ̃(
m
a
) =

ϕ(m)

a
.

• (Well defined) Suppose m′

a′ = m
a , then there is some c ∈ A such that ma′c = m′ac.

Now ϕ(m)a′c = ϕ(ma′c) = ϕ(m′ac) = ϕ(m′)ac, so ϕ(m)
a = ϕ(m′)

a′ .

• (A−1R-hom) For r ∈ R, m, n ∈ M and a, b, c ∈ A we have

ϕ̃
( r

a
m
b
+

n
c

)
= ϕ̃

(
rmc + nab

abc

)
=

ϕ(rmc + nab)
abc

=
rϕ(m)c + ϕ(n)ab

abc

=
r
a

ϕ(m)

b
+

ϕ(n)
c

=
r
a

ϕ̃
(m

b

)
+ ϕ̃

(n
c

)
.

(b) Let ϕ : L → M, ψ : M → N be the above maps.
• (Exact at A−1L) We show that ϕ̃ is injective, so suppose that ϕ̃( ℓa ) =

ϕ(ℓ)
a = 0. Then

there is some c ∈ A such that ϕ(ℓ)c = ϕ(ℓc) = 0. Since ϕ is injective, we have ℓc = 0
and hence ℓ

a = 0.



MATH3195/5195M EXERCISE SHEET 3 SOLUTIONS 5

• (Exact at A−1M) Firstly, ψ̃(ϕ̃( ℓa )) = ψ(ϕ(ℓ))
a = 0 since the original sequence is exact.

Thus imϕ̃ ⊂ ker ψ̃. Now suppose m
a ∈ ker ψ̃, so ψ̃(m

a ) = ψ(m)
a = 0. Thus there is

some c ∈ A such that ψ(m)c = ψ(mc) = 0, so mc ∈ ker ψ = imϕ and we can write
mc = ϕ(ℓ) for some ℓ ∈ L. But now ϕ̃( ℓ

ac ) =
ϕ(ℓ)

ac = mc
ac = m

a , so ker ψ̃ ⊂ imϕ̃.

• (Exact at A−1N) We show ψ̃ is surjective, so suppose n
a ∈ A−1N. Now since ψ is

surjective we have m ∈ M such that ψ(m) = n. Then ψ̃(m
a ) =

ψ(m)
a = n

a .


