## MATH3195/5195M EXERCISE SHEET 3 SOLUTIONS

## DUE: MARCH 11, 2024

**Problem 1.** (a) Let  $R = \mathbb{Q}[[x, y]]$  and let  $J = \langle xy + y^3, x + x^2y, xy + 3y, x^4 - 5y^2 + x^2y \rangle$  be an ideal in *R*. Show that *J* is minimally generated by two elements in *R*.

(b) Let R = K[t] and consider  $M = K[t, t^{-1}]$  as *R*-module and let I = tR be an ideal in *R*. Show that M = IM but  $M \neq 0$ . Why does this example not contradict Nakayama's lemma?

**Solution.** (a) Use the Nakayama lemma to show that  $J = \mathfrak{m} = \langle x, y \rangle$ : the lemma says that if for a finitely generated *R*-module *M* and a submodule  $N \subseteq M$  and an ideal  $I \subseteq J(R)$  one has the equality M = N + IM, then N = M.

In this example *R* is a local ring with maximal ideal  $\mathfrak{m}$ , thus we have  $\mathfrak{m} = J(R)$ . Clearly  $J \subseteq \mathfrak{m}$ .

We show that  $\mathfrak{m} = J + \mathfrak{m}\mathfrak{m}$ , then by Nakayama's lemma it follows that  $\mathfrak{m} = J$ : first calculate  $\mathfrak{m}^2 = \langle x^2, xy, y^2 \rangle$ . Then

$$J + \mathfrak{m}^2 = xy + y^3, x + x^2y, xy + 3y, x^4 - 5y^2 + x^2, x^2, xy, y^2 \rangle = \langle x, 3y \rangle,$$

which is equal to  $\mathfrak{m}$ , since  $3 \in \mathbb{Q}^*$ .

For the minimal number of generators we can use the third version of Nakayama's lemma:  $(R, \mathfrak{m})$  is a local ring and  $\mathfrak{m}/\mathfrak{m}^2 \cong \mathbb{Q}x \oplus \mathbb{Q}y$  as a  $R/\mathfrak{m} \cong \mathbb{Q}$ -vector space. So x and y form a basis of this vector space and Nakayama's lemma allows to conclude that hey are a minimal set of generators of  $\mathfrak{m}$ .

(b) First calculate *IM*: these are all elements of the form  $f(t)tg(t,t^{-1})$ , where  $f(t) \in R$ ,  $g(t,t^{-1}) \in M$ .

Clearly this element is again a polynomial in *t* and  $t^{-1}$ , so is contained in *M*.

On the other hand, it is also clear that  $M \subseteq IM$ , since any element  $g(t, t^{-1})$  of M can be written as  $t(t^{-1}g(t, t^{-1}))$ , with  $(t^{-1}g(t, t^{-1})) \in M$ .

Thus we have IM = M.

There are various conditions of Nakayama's lemma that are not satisfied: *I* is not a subset of  $J(R) = \langle 0 \rangle$ . Also, *M* is not finitely generated as an *R*-module (as *R*-module,  $M = R + Rt^{-1} + Rt^{-2} + \cdots$ . Note that this is not a *direct* sum!).

Problem 2. Prove the isomorphism theorems for modules.

**Solution.** Note that solution includes the proofs of all isomorphism theorems for your reference.

(1) Use the notation from the lecture: let  $\phi : M \to N$  be an *R*-module homomorphism. Define a map  $\tilde{\phi} : M / \ker \phi \to \operatorname{im} \phi$  by

$$\tilde{\phi}(m + \ker \phi) = \phi(m).$$

- (Well defined) If  $m + \ker \phi = m' + \ker \phi$ , then  $m m' \in \ker \phi$ . So  $\tilde{\phi}(m + \ker \phi) = \phi(m) \phi(m m') = \phi(m') = \tilde{\phi}(m' + \ker \phi)$ .
- (*R*-homomorphism)  $\tilde{\phi}(r(m + \ker \phi) + s(n + \ker \phi)) = \tilde{\phi}((rm + sn) + \ker \phi) = \phi(rm + sn) = r\phi(m) + s\phi(n) = r\tilde{\phi}(m + \ker \phi) + s\phi(n + \ker \phi).$
- (Injective) If  $\phi(m + \ker \phi) = 0$  then  $\phi(m) = 0$ , so  $m \in \ker \phi$  and  $m + \ker \phi = 0$ .
- (Surjective) Clear.

So  $\tilde{\phi}$  is an *R*-isomorphism.

(2) Here assume that  $M \supseteq N \supseteq L$  are *R*-modules. Define a map  $\phi : M/L \to M/N$  by

$$\phi(m+L) = m+N.$$

- (Well defined) If m + L = m' + L, then  $m m' \in L \subset N$ , so m + N = m' + N.
- (*R*-homomorphism)  $\phi(r(m+L) + r'(m'+L)) = \phi((rm + r'm') + L) = (rm + r'm') + N = r(m+N) + r'(m'+N) = r\phi(m+L) + r'\phi(m'+L).$
- (Kernel)  $m + L \in \ker \phi \iff \phi(m + L) = 0 \iff m + N = 0 \iff m \in N \iff m + L \in N/L.$
- (Image) Clearly  $\phi$  is surjective.

So by (i),  $\tilde{\phi}$  defines an isomorphism  $(M/L)/(N/L) \cong (M/N)$ .

(3) Define  $\phi : M \to (M + L)/L$  by

$$\phi(m) \to m + L$$

- . (Note that  $m \in M \subset M + L$ ).
  - (*R*-homomorphism)  $\phi(rm + sn) = (rm + sn) + L = r(m + L) + s(n + L) = r\phi(m) + s\phi(n)$ .
  - (Kernel)  $m \in \ker \phi \iff \phi(m) = 0 \iff m + L = 0 \iff m \in L \iff m \in M \cap L$ .
  - (Image) Let  $(m + \ell) + L$  in (M + L)/L. Then  $(m + \ell) m \in L$ , so  $m + L = (m + \ell) + L$ . Now  $\phi(m) = m + L = (m + \ell) + L$ , so  $\phi$  is surjective.

By (i),  $\tilde{\phi}$  defines an isomorphism  $M/(M \cap L) \cong (M+L)/L$ .



is a commutative diagram of *R*-modules and all columns and the middle row is exact. Show that the top row is exact if and only if the bottom row is exact.

**Solution.** (a) Use the snake lemma: First assume that the top row is exact. Then since the diagram commutes and the second row is exact, the snake lemma yields the exact sequence:

$$0 \rightarrow \ker(f_1) \rightarrow \ker(f_2) \rightarrow \ker(f_3) \rightarrow \operatorname{coker}(f_1) \rightarrow \operatorname{coker}(f_2) \rightarrow \operatorname{coker}(f_3) \rightarrow 0$$

Since the *i*-th column is exact,  $ker(f_i) = 0$  and  $coker(f_i) \cong C_i$  for i = 1, 2, 3. Thus the above exact sequence becomes the short exact sequence

$$0 \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow 0$$
,

which had to be shown.

Similarly, if the bottom row is exact, the snake lemma gives us the exact sequence

$$0 \to \ker(g_1) \to \ker(g_2) \to \ker(g_3) \to \operatorname{coker}(g_1) \to \operatorname{coker}(g_2) \to \operatorname{coker}(g_3) \to 0.$$

Since the *i*-th column is exact,  $ker(g_i) = A_i$  and  $coker(g_i) \cong 0$  for i = 1, 2, 3. This simplifies to the short exact sequence

$$0 
ightarrow A_1 
ightarrow A_2 
ightarrow A_3 
ightarrow 0$$
 ,

which had to be shown.

**Problem 4.** (Localisation of a module) Let *R* be a ring and  $A \subset R$  be multiplicatively closed. Let *M* be an *R*-module. Assume we know that  $(m, a) \sim (n, b)$  if and only if mbc = nac for some  $c \in A$  defines an equivalence relation on  $M \times A$ .

(a) Writing  $A^{-1}M$  for the set of equivalence classes of  $\sim$ , and  $\frac{m}{a}$  for the class containing (m, a), show that the operation

$$\frac{m}{a} + \frac{n}{b} = \frac{bm + an}{ab}$$

is well defined and hence that  $A^{-1}M$  is an abelian group.

(b) By defining an appropriate multiplication rule, show that  $A^{-1}M$  has the structure of an  $A^{-1}R$ -module.

**Solution.** (a) It suffices to prove the result for  $\frac{m'}{a'} = \frac{m}{a}$ . Then we have  $c \in A$  such that m'ac = ma'c. Now  $\frac{m'}{a'} + \frac{n}{b} = \frac{bm'+a'n}{a'b}$ , but

$$(bm' + a'n)(ab)c = (m'ac)b^2 + aa'bcn = (ma'c)b^2 + aa'bcn = (bm + an)(a'b)c$$

so each sum is equal to the same class, so the addition is well defined. Associativity is clear by associativity of *M*, the inverse of  $\frac{m}{a}$  is  $\frac{-m}{a}$  and the identity is  $\frac{0}{1}$ .

(b) We define  $\frac{r}{a}\frac{m}{b} = \frac{rm}{ab}$ . It is easy to then check that this is a module.

**Problem 5.** Let *R* be a ring and  $A \subset R$  be multiplicatively closed.

- (a) Suppose that  $\phi : M \to N$  is a homomorphism of *R* modules. Show  $\phi$  induces an  $A^{-1}R$ -homomorphism  $A^{-1}M \to A^{-1}N$ .
- (b) Suppose  $0 \to L \to M \to N \to 0$  is an exact sequence of *R*-modules. Show that  $0 \to A^{-1}L \to A^{-1}M \to A^{-1}N \to 0$ , with the induced maps from (i), is an exact sequence of  $A^{-1}R$ -modules. (*Remark*: This means that localization is an exact functor from the category of *R*-modules to the category of  $A^{-1}R$ -modules)

**Solution.** (a) We define  $\tilde{\phi} : A^{-1}M \to A^{-1}N$  by

$$\tilde{\phi}(\frac{m}{a}) = \frac{\phi(m)}{a}$$

- (Well defined) Suppose  $\frac{m'}{a'} = \frac{m}{a}$ , then there is some  $c \in A$  such that ma'c = m'ac. Now  $\phi(m)a'c = \phi(ma'c) = \phi(m'ac) = \phi(m')ac$ , so  $\frac{\phi(m)}{a} = \frac{\phi(m')}{a'}$ .
- $(A^{-1}R$ -hom) For  $r \in R$ ,  $m, n \in M$  and  $a, b, c \in A$  we have

 $\tilde{\phi}$ 

$$\left(\frac{r}{a}\frac{m}{b} + \frac{n}{c}\right) = \tilde{\phi}\left(\frac{rmc + nab}{abc}\right)$$
$$= \frac{\phi(rmc + nab)}{abc}$$
$$= \frac{r\phi(m)c + \phi(n)ab}{abc}$$
$$= \frac{r}{a}\frac{\phi(m)}{b} + \frac{\phi(n)}{c}$$
$$= \frac{r}{a}\tilde{\phi}\left(\frac{m}{b}\right) + \tilde{\phi}\left(\frac{n}{c}\right).$$

- (b) Let  $\phi : L \to M$ ,  $\psi : M \to N$  be the above maps.
  - (Exact at  $A^{-1}L$ ) We show that  $\tilde{\phi}$  is injective, so suppose that  $\tilde{\phi}(\frac{\ell}{a}) = \frac{\phi(\ell)}{a} = 0$ . Then there is some  $c \in A$  such that  $\phi(\ell)c = \phi(\ell c) = 0$ . Since  $\phi$  is injective, we have  $\ell c = 0$  and hence  $\frac{\ell}{a} = 0$ .

- (Exact at  $A^{-1}M$ ) Firstly,  $\tilde{\psi}(\tilde{\phi}(\frac{\ell}{a})) = \frac{\psi(\phi(\ell))}{a} = 0$  since the original sequence is exact. Thus  $\operatorname{im}\tilde{\phi} \subset \operatorname{ker}\tilde{\psi}$ . Now suppose  $\frac{m}{a} \in \operatorname{ker}\tilde{\psi}$ , so  $\tilde{\psi}(\frac{m}{a}) = \frac{\psi(m)}{a} = 0$ . Thus there is some  $c \in A$  such that  $\psi(m)c = \psi(mc) = 0$ , so  $mc \in \operatorname{ker}\psi = \operatorname{im}\phi$  and we can write  $mc = \phi(\ell)$  for some  $\ell \in L$ . But now  $\tilde{\phi}(\frac{\ell}{ac}) = \frac{\phi(\ell)}{ac} = \frac{mc}{ac} = \frac{m}{a}$ , so  $\operatorname{ker}\tilde{\psi} \subset \operatorname{im}\tilde{\phi}$ .
- (Exact at  $A^{-1}N$ ) We show  $\tilde{\psi}$  is surjective, so suppose  $\frac{n}{a} \in A^{-1}N$ . Now since  $\psi$  is surjective we have  $m \in M$  such that  $\psi(m) = n$ . Then  $\tilde{\psi}(\frac{m}{a}) = \frac{\psi(m)}{a} = \frac{n}{a}$ .