
MATH3195/5195M EXERCISE SHEET 2
SOLUTIONS

DUE: FEBRUARY 26, 2024

Problem 1. (a) Show that R[x, y]/(x3 − y2) is isomorphic to R[t2, t3]. [Hint: First homomorphism the-
orem. First show that f (x, y) = x3 − y2 is in the kernel of the map φ as defined in the lecture. In
order to see that ( f (x, y)) is the full kernel, you may use the fact, that the kernel of φ is generated by
elements of the form xayb − xa′yb′ , where a, a′, b, b′ ∈ N. This fact can be proved using Gröbner bases
methods]

(b) Is (x3 − y2) a prime ideal in R[x, y]? Explain!

Solution. (a) Define φ : R[x, y] −→ R[t] by φ(x) = t2 and φ(y) = t3. The image of φ is the subring
of R[t] generated by t2 and t3, that is, the ring R[t2, t3]. Then by the first homomorphism theorem,
im(φ) = R[t2, t3] ∼= R[x, y]/ ker φ. It remains to determine ker φ. The element f (x, y) = x3 − y2 is in ker φ

since φ( f (x, y)) = f (t2, t3) = (t2)3 − (t3)2 = 0. Now use the hint, which says that ker φ = (xayb − xa′yb′ ,
where a, a′, b, b′ are some integers ∈ N). Assume that g(x, y) = xayb − xa′yb′ is in ker φ, that means that
t2a+3b − t2a′+3b′ = 0. So we are looking for all integer linear combinations such that 2a + 3b = 2a′ + 3b′,
or 2(a − a′) = 3(b′ − b). We may assume w.l.o.g. that a > a′ and hence b′ > b (if a = a′ we would get
b = b′ and the binomial would be 0). Since a − a′ and b′ − b are integers and 2 and 3 are coprime, the
above equation implies that 3|(a − a′) and 2|(b′ − b). Thus a − a′ = 3k, which implies that b′ − b = 2k
for some k ∈ N>0. Thus any g(x, y) in ker φ is of the form xa′+3kyb′−2k − xa′yb′ = xa′yb′−2k(x3k − y2k).
Since x3k − y2k = (x3)k − (y2)k = (x3 − y2)(∑k−1

i=0 x3iy2(k−1−i)), one sees that f (x, y)|g(x, y), which means
that g(x, y) ∈ ( f (x, y)). Thus ker φ = (x3 − y2) and the first isomorphism theorem shows that R[t2, t3] ∼=
R[x, y]/(x3 − y2).

(b) Since R[t2, t3] is a subring of the integral domain R[t], it is itself an integral domain (if we had
a(t2, t3)b(t2, t3) = 0, then since both a, b ∈ R[t], this implies that either a or b is 0). By (a) R[x, y]/(x3 −
y2) ∼= R[t2, t3], hence R[x, y]/(x3 − y2) is an integral domain. By the theorem from the lecture (x3 − y2)
is a prime ideal in R[x, y].

Problem 2. (a) Show that the ideal (x4 − 5x3 + 7x2 − 5x + 6, x4 + 2x2 + 1, x4 − 2x3 + x2 − 2x) in R[x] is
maximal.

(b) Let R be a ring such that every element satisfies xn = x for some n > 1 (here the integer n depends
on x). Show that every prime ideal in R is maximal.
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Solution. (a) If ( f (x), g(x), h(x)) is an ideal in K[x], where K is a field, then one can see that ( f (x), g(x), h(x)) =
(gcd( f , g, h)).
We first calculate the factorizations of the polynomials f (x) = x4 − 5x3 + 7x2 − 5x + 6 = (x − 2)(x −
3)(x2 + 1), g(x) = x4 + 2x2 + 1 = (x2 + 1)2 and h(x) = x4 − 2x3 + x2 − 2x = x(x − 2)(x2 + 1) into
irreducible polynomials in R[x] (use e.g. rational root test). Thus we see that the gcd of f (x), g(x), h(x)
is x2 + 1 and ( f (x), g(x), h(x)) = (x2 + 1). But x2 + 1 is irreducible in R[x], thus R[x]/(x2 + 1) is a field.
This means that (x2 + 1) is a maximal ideal in R[x].
(b) Let p ⊆ R be a prime ideal and let x ∈ R\p with xn = x for some n > 1. Since p is prime, R/p is an
integral domain and x̄ ̸= 0̄ is a nonzero-divisor. Then from the equation x̄n − x̄ = x̄(x̄n−1 − 1̄) = 0̄ we
can cancel x̄ and obtain x̄n−1 = 1̄. But this means that x̄x̄n−2 = 1̄, that is, x̄n−2 is a multiplicative inverse
of x̄. Thus any element x̄ ̸= 0̄ ∈ R/p is invertible, which implies that R/p is a field. But then (as shown
in the lecture) p is a maximal ideal.

Problem 3. (a) Consider K[x, y, z] and order all monomials of degree less than or equal to 3 with respect
to the following monomial orders: (i) <lex, (ii) <deglex, (iii) <λ, where λ is a suitable linear form
λ : R3 −→ R.

(b) Determine leading monomial and coefficient of the polynomial f = x4 + z5 + x3z + yz4 + x2y2 with
respect to the momomial orders from (a).

Solution. (a) All monomials of degree ≤ 2 are: 1, x, y, z, x2, xy, xz, yz, y2, z2.The orders are:
(i) 1 <lex z <lex z2 <lex y <lex yz <lex y2 <lex x <lex xz <lex xy <lex x2

(ii) 1 <deglex z <deglex y <deglex x <deglex z2 <deglex yz <deglex y2 <deglex xz <deglex xy <deglex x2.
(iii) We have to choose a λ with Q-linearly independent entries. Take e.g. λ = (1,

√
2,
√

5). Then
1 <λ x <λ y <λ z <λ x2 <λ xy <λ y2 <λ xz <λ yz <λ z2.
(b) (i) lmlex( f ) = x4 and lclex( f ) = 1, (ii) lmdeglex( f ) = yz4 and lclex( f ) = 1, (ii) with λ from above
lmλ( f ) = z5 and lcλ( f ) = 1.

Problem 4. Let R be a ring. Show that R is local if and only if the nonunits of R form a maximal ideal.

Solution. Let R be local, that is, there is a unique maximal ideal m ⊆ R. Denote S = { nonunits of R}. We
have to show that S is an ideal. Let s, t ∈ S. Then ⟨s⟩+ ⟨t⟩ is an ideal and clearly ⟨s⟩ ⊆ m and ⟨t⟩ ⊆ m. But
this implies that s − t ∈ m. If s ∈ S and r ∈ R, then rs ∈ m since s ∈ m, thus S is an ideal in R. If S ⊊ m,
then there would exist a unit in m (by definition of S). But this would mean that m = R, contradiction to
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the fact that m is a proper ideal of R.
For the other direction, assume that S is a maximal ideal in R.This means that S is a proper ideal of R.
Let M be an arbitrary maximal ideal of R. Then every element of M has to be a non-unit of R (since M is
supposed to be proper). This implies that M ⊆ S and by maximality, M = S.

Problem 5. Let I be an ideal of R and A be a multiplicatively-closed subset of R. Show that:

(a) A−1 I is an ideal of A−1R;
(b) x

a ∈ A−1 I if and only if there is some b ∈ A with xb ∈ I;
(c) A−1 I = A−1R if and only if I ∩ A ̸= ∅;
(d) localization commutes with quotients, that is

A−1R/A−1 I ∼= A−1
(R/I), where A = {a + I : a ∈ A}.

Solution. (a) Firstly, since 0 ∈ I and 1 ∈ A we have 0
1 ∈ A−1 I. Now suppose that r

a , sb ∈ A−1 I, then
r
a −

s
b = rb−sa

ab . Since r, s ∈ I ⊆ R we have rb − sa ∈ I, and since A is multiplicatively closed we have
ab ∈ A. Thus r

a −
s
b ∈ A−1 I. Finally if t

c ∈ A−1R then t
c

r
a = tr

ac , and again since tr ∈ I and ac ∈ A we have
t
c

r
a ∈ A−1 I, so A−1 I ⊆ A−1R.

(b) If x
a ∈ A−1 I then setting b = 1 gives the result. Conversely if xb ∈ I then xb

ab ∈ A−1 I, but xb
ab = x

a .
(c) Suppose A−1 I = A−1R, then 1A−1R = 1

1 ∈ A−1 I. By (b), this implies that there is some b ∈ A
with 1 · b ∈ I, i.e. I ∩ A ̸= ∅. Conversely if I ∩ A ̸= ∅ then choose a ∈ I ∩ A. Now a

a ∈ A−1 I, but
a
a = 1

1 = 1A−1R, so A−1 I = A−1R.
(d) Define ϕ : A−1R → Ā−1(R/I) by ϕ( r

a ) =
r+I
a+I . It is easy to check that ϕ is well-defined. This map is a
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homomorphism as given r
a , s

b ∈ A−1R we have

ϕ
( r

a
+

s
b

)
= ϕ

(
rb + sa

ab

)
=

(rb + sa) + I
ab + I

=
(r + I)(b + I) + (s + I)(a + I)

(a + I)(b + I)

=
r + I
a + I

+
s + I
b + I

= ϕ
( r

a

)
+ ϕ

( s
b

)
,

ϕ
( r

a
s
b

)
= ϕ

( rs
ab

)
=

rs + I
ab + I

=
(r + I)(s + I)
(a + I)(b + I)

=
r + I
a + I

s + I
b + I

= ϕ
( r

a

)
ϕ
( s

b

)
, and

ϕ(1A−1R) = ϕ

(
1
1

)
=

1 + I
1 + I

= 1Ā−1(R/I).

Also ϕ is clearly surjective, and ϕ( r
a ) =

r+I
a+I =

I
1+I iff there is some c + I ∈ Ā such that (r + I)(1 + I)(c +

I) = I(a + I)(c + I), that is iff there is some c ∈ A such that rc ∈ I. By part (b) this is iff r
a ∈ A−1 I, so

ker ϕ = A−1 I. By the first isomorphism theorem the result follows.


