## MATH3195/5195M EXERCISE SHEET 2 SOLUTIONS

DUE: FEBRUARY 26, 2024

Problem 1. (a) Show that $\mathbb{R}[x, y] /\left(x^{3}-y^{2}\right)$ is isomorphic to $\mathbb{R}\left[t^{2}, t^{3}\right]$. [Hint: First homomorphism theorem. First show that $f(x, y)=x^{3}-y^{2}$ is in the kernel of the map $\varphi$ as defined in the lecture. In order to see that $(f(x, y))$ is the full kernel, you may use the fact, that the kernel of $\varphi$ is generated by elements of the form $x^{a} y^{b}-x^{a^{\prime}} y^{b^{\prime}}$, where $a, a^{\prime}, b, b^{\prime} \in \mathbb{N}$. This fact can be proved using Gröbner bases methods]
(b) Is $\left(x^{3}-y^{2}\right)$ a prime ideal in $\mathbb{R}[x, y]$ ? Explain!

Solution. (a) Define $\varphi: \mathbb{R}[x, y] \rightarrow \mathbb{R}[t]$ by $\varphi(x)=t^{2}$ and $\varphi(y)=t^{3}$. The image of $\varphi$ is the subring of $\mathbb{R}[t]$ generated by $t^{2}$ and $t^{3}$, that is, the ring $\mathbb{R}\left[t^{2}, t^{3}\right]$. Then by the first homomorphism theorem, $\operatorname{im}(\varphi)=\mathbb{R}\left[t^{2}, t^{3}\right] \cong \mathbb{R}[x, y] / \operatorname{ker} \varphi$. It remains to determine $\operatorname{ker} \varphi$. The element $f(x, y)=x^{3}-y^{2}$ is in $\operatorname{ker} \varphi$ since $\varphi(f(x, y))=f\left(t^{2}, t^{3}\right)=\left(t^{2}\right)^{3}-\left(t^{3}\right)^{2}=0$. Now use the hint, which says that $\operatorname{ker} \varphi=\left(x^{a} y^{b}-x^{a^{\prime}} y^{b^{\prime}}\right.$, where $a, a^{\prime}, b, b^{\prime}$ are some integers $\in \mathbb{N}$ ). Assume that $g(x, y)=x^{a} y^{b}-x^{a^{\prime}} y^{b^{\prime}}$ is in $\operatorname{ker} \varphi$, that means that $t^{2 a+3 b}-t^{2 a^{\prime}+3 b^{\prime}}=0$. So we are looking for all integer linear combinations such that $2 a+3 b=2 a^{\prime}+3 b^{\prime}$, or $2\left(a-a^{\prime}\right)=3\left(b^{\prime}-b\right)$. We may assume w.l.o.g. that $a>a^{\prime}$ and hence $b^{\prime}>b$ (if $a=a^{\prime}$ we would get $b=b^{\prime}$ and the binomial would be 0 ). Since $a-a^{\prime}$ and $b^{\prime}-b$ are integers and 2 and 3 are coprime, the above equation implies that $3 \mid\left(a-a^{\prime}\right)$ and $2 \mid\left(b^{\prime}-b\right)$. Thus $a-a^{\prime}=3 k$, which implies that $b^{\prime}-b=2 k$ for some $k \in \mathbb{N}_{>0}$. Thus any $g(x, y)$ in $\operatorname{ker} \varphi$ is of the form $x^{a^{\prime}+3 k} y^{b^{\prime}-2 k}-x^{a^{\prime}} y^{b^{\prime}}=x^{a^{\prime}} y^{b^{\prime}-2 k}\left(x^{3 k}-y^{2 k}\right)$. Since $x^{3 k}-y^{2 k}=\left(x^{3}\right)^{k}-\left(y^{2}\right)^{k}=\left(x^{3}-y^{2}\right)\left(\sum_{i=0}^{k-1} x^{3 i} y^{2(k-1-i)}\right)$, one sees that $f(x, y) \mid g(x, y)$, which means that $g(x, y) \in(f(x, y))$. Thus $\operatorname{ker} \varphi=\left(x^{3}-y^{2}\right)$ and the first isomorphism theorem shows that $\mathbb{R}\left[t^{2}, t^{3}\right] \cong$ $\mathbb{R}[x, y] /\left(x^{3}-y^{2}\right)$.
(b) Since $\mathbb{R}\left[t^{2}, t^{3}\right]$ is a subring of the integral domain $\mathbb{R}[t]$, it is itself an integral domain (if we had $a\left(t^{2}, t^{3}\right) b\left(t^{2}, t^{3}\right)=0$, then since both $a, b \in \mathbb{R}[t]$, this implies that either $a$ or $b$ is 0$)$. By (a) $\mathbb{R}[x, y] /\left(x^{3}-\right.$ $\left.y^{2}\right) \cong \mathbb{R}\left[t^{2}, t^{3}\right]$, hence $\mathbb{R}[x, y] /\left(x^{3}-y^{2}\right)$ is an integral domain. By the theorem from the lecture $\left(x^{3}-y^{2}\right)$ is a prime ideal in $\mathbb{R}[x, y]$.

Problem 2. (a) Show that the ideal $\left(x^{4}-5 x^{3}+7 x^{2}-5 x+6, x^{4}+2 x^{2}+1, x^{4}-2 x^{3}+x^{2}-2 x\right)$ in $\mathbb{R}[x]$ is maximal.
(b) Let $R$ be a ring such that every element satisfies $x^{n}=x$ for some $n>1$ (here the integer $n$ depends on $x$ ). Show that every prime ideal in $R$ is maximal.

Solution. (a) If $(f(x), g(x), h(x))$ is an ideal in $K[x]$, where $K$ is a field, then one can see that $(f(x), g(x), h(x))=$ $(\operatorname{gcd}(f, g, h))$.
We first calculate the factorizations of the polynomials $f(x)=x^{4}-5 x^{3}+7 x^{2}-5 x+6=(x-2)(x-$ 3) $\left(x^{2}+1\right), g(x)=x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$ and $h(x)=x^{4}-2 x^{3}+x^{2}-2 x=x(x-2)\left(x^{2}+1\right)$ into irreducible polynomials in $\mathbb{R}[x]$ (use e.g. rational root test). Thus we see that the gcd of $f(x), g(x), h(x)$ is $x^{2}+1$ and $(f(x), g(x), h(x))=\left(x^{2}+1\right)$. But $x^{2}+1$ is irreducible in $\mathbb{R}[x]$, thus $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field. This means that $\left(x^{2}+1\right)$ is a maximal ideal in $\mathbb{R}[x]$.
(b) Let $\mathfrak{p} \subseteq R$ be a prime ideal and let $x \in R \backslash \mathfrak{p}$ with $x^{n}=x$ for some $n>1$. Since $\mathfrak{p}$ is prime, $R / \mathfrak{p}$ is an integral domain and $\bar{x} \neq \overline{0}$ is a nonzero-divisor. Then from the equation $\bar{x}^{n}-\bar{x}=\bar{x}\left(\bar{x}^{n-1}-\overline{1}\right)=\overline{0}$ we can cancel $\bar{x}$ and obtain $\bar{x}^{n-1}=\overline{1}$. But this means that $\bar{x} \bar{x}^{n-2}=\overline{1}$, that is, $\bar{x}^{n-2}$ is a multiplicative inverse of $\bar{x}$. Thus any element $\bar{x} \neq \overline{0} \in R / \mathfrak{p}$ is invertible, which implies that $R / \mathfrak{p}$ is a field. But then (as shown in the lecture) $\mathfrak{p}$ is a maximal ideal.

Problem 3. (a) Consider $K[x, y, z]$ and order all monomials of degree less than or equal to 3 with respect to the following monomial orders: (i) $<_{\text {lex }}$, (ii) $<_{\text {deglex }}$, (iii) $<_{\lambda}$, where $\lambda$ is a suitable linear form $\lambda: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
(b) Determine leading monomial and coefficient of the polynomial $f=x^{4}+z^{5}+x^{3} z+y z^{4}+x^{2} y^{2}$ with respect to the momomial orders from (a).

Solution. (a) All monomials of degree $\leq 2$ are: $1, x, y, z, x^{2}, x y, x z, y z, y^{2}, z^{2}$. The orders are:
(i) $1<_{\text {lex }} z<_{\text {lex }} z^{2}<_{\text {lex }} y<_{\text {lex }} y z<_{\text {lex }} y^{2}<_{\text {lex }} x<_{\text {lex }} x z<_{\text {lex }} x y<_{\text {lex }} x^{2}$
(ii) $1<_{\text {deglex }} z<_{\text {deglex }} y<_{\text {deglex }} x<_{\text {deglex }} z^{2}<_{\text {deglex }} y z<_{\text {deglex }} y^{2}<_{\text {deglex }} x z<_{\text {deglex }} x y<_{\text {deglex }} x^{2}$.
(iii) We have to choose a $\lambda$ with $Q$-linearly independent entries. Take e.g. $\lambda=(1, \sqrt{2}, \sqrt{5})$. Then $1<_{\lambda} x<_{\lambda} y<_{\lambda} z<_{\lambda} x^{2}<_{\lambda} x y<_{\lambda} y^{2}<_{\lambda} x z<_{\lambda} y z<_{\lambda} z^{2}$.
(b) (i) $l m_{\text {lex }}(f)=x^{4}$ and $l c_{\text {lex }}(f)=1$, (ii) $\operatorname{lm}_{\text {deglex }}(f)=y z^{4}$ and $l c_{\text {lex }}(f)=1$, (ii) with $\lambda$ from above $l m_{\lambda}(f)=z^{5}$ and $l c_{\lambda}(f)=1$.

Problem 4. Let $R$ be a ring. Show that $R$ is local if and only if the nonunits of $R$ form a maximal ideal.

Solution. Let $R$ be local, that is, there is a unique maximal ideal $\mathfrak{m} \subseteq R$. Denote $S=\{$ nonunits of $R\}$. We have to show that $S$ is an ideal. Let $s, t \in S$. Then $\langle s\rangle+\langle t\rangle$ is an ideal and clearly $\langle s\rangle \subseteq \mathfrak{m}$ and $\langle t\rangle \subseteq \mathfrak{m}$. But this implies that $s-t \in \mathfrak{m}$. If $s \in S$ and $r \in R$, then $r s \in \mathfrak{m}$ since $s \in \mathfrak{m}$, thus $S$ is an ideal in $R$. If $S \subsetneq \mathfrak{m}$, then there would exist a unit in $\mathfrak{m}$ (by definition of $S$ ). But this would mean that $\mathfrak{m}=R$, contradiction to
the fact that $\mathfrak{m}$ is a proper ideal of $R$.
For the other direction, assume that $S$ is a maximal ideal in $R$. This means that $S$ is a proper ideal of $R$. Let $M$ be an arbitrary maximal ideal of $R$. Then every element of $M$ has to be a non-unit of $R$ (since $M$ is supposed to be proper). This implies that $M \subseteq S$ and by maximality, $M=S$.

Problem 5. Let $I$ be an ideal of $R$ and $A$ be a multiplicatively-closed subset of $R$. Show that:
(a) $A^{-1} I$ is an ideal of $A^{-1} R$;
(b) $\frac{x}{a} \in A^{-1} I$ if and only if there is some $b \in A$ with $x b \in I$;
(c) $A^{-1} I=A^{-1} R$ if and only if $I \cap A \neq \varnothing$;
(d) localization commutes with quotients, that is

$$
A^{-1} R / A^{-1} I \cong \bar{A}^{-1}(R / I), \text { where } \bar{A}=\{a+I: a \in A\} .
$$

Solution. (a) Firstly, since $0 \in I$ and $1 \in A$ we have $\frac{0}{1} \in A^{-1} I$. Now suppose that $\frac{r}{a}, s b \in A^{-1} I$, then $\frac{r}{a}-\frac{s}{b}=\frac{r b-s a}{a b}$. Since $r, s \in I \subseteq R$ we have $r b-s a \in I$, and since $A$ is multiplicatively closed we have $a b \in A$. Thus $\frac{r}{a}-\frac{s}{b} \in A^{-1} I$. Finally if $\frac{t}{c} \in A^{-1} R$ then $\frac{t}{c} \frac{r}{a}=\frac{t r}{a c}$, and again since $t r \in I$ and $a c \in A$ we have $\frac{t}{c} \frac{r}{a} \in A^{-1} I$, so $A^{-1} I \subseteq A^{-1} R$.
(b) If $\frac{x}{a} \in A^{-1} I$ then setting $b=1$ gives the result. Conversely if $x b \in I$ then $\frac{x b}{a b} \in A^{-1} I$, but $\frac{x b}{a b}=\frac{x}{a}$.
(c) Suppose $A^{-1} I=A^{-1} R$, then $1_{A^{-1} R}=\frac{1}{1} \in A^{-1} I$. By (b), this implies that there is some $b \in A$ with $1 \cdot b \in I$, i.e. $I \cap A \neq \varnothing$. Conversely if $I \cap A \neq \varnothing$ then choose $a \in I \cap A$. Now $\frac{a}{a} \in A^{-1} I$, but $\frac{a}{a}=\frac{1}{1}=1_{A^{-1} R}$, so $A^{-1} I=A^{-1} R$.
(d) Define $\phi: A^{-1} R \rightarrow \bar{A}^{-1}(R / I)$ by $\phi\left(\frac{r}{a}\right)=\frac{r+I}{a+I}$. It is easy to check that $\phi$ is well-defined. This map is a
homomorphism as given $\frac{r}{a}, \frac{s}{b} \in A^{-1} R$ we have

$$
\begin{aligned}
\phi\left(\frac{r}{a}+\frac{s}{b}\right) & =\phi\left(\frac{r b+s a}{a b}\right) \\
& =\frac{(r b+s a)+I}{a b+I} \\
& =\frac{(r+I)(b+I)+(s+I)(a+I)}{(a+I)(b+I)} \\
& =\frac{r+I}{a+I}+\frac{s+I}{b+I} \\
& =\phi\left(\frac{r}{a}\right)+\phi\left(\frac{s}{b}\right), \\
\phi\left(\frac{r}{a} \frac{s}{b}\right) & =\phi\left(\frac{r s}{a b}\right) \\
& =\frac{r s+I}{a b+I} \\
& =\frac{(r+I)(s+I)}{(a+I)(b+I)} \\
& =\frac{r+I}{a+I} \frac{s+I}{b+I} \\
& =\phi\left(\frac{r}{a}\right) \phi\left(\frac{s}{b}\right), \text { and } \\
\phi\left(1_{A^{-1} R}\right) & =\phi\left(\frac{1}{1}\right) \\
& =\frac{1+I}{1+I} \\
& =1_{\bar{A}^{-1}(R / I) .}
\end{aligned}
$$

Also $\phi$ is clearly surjective, and $\phi\left(\frac{r}{a}\right)=\frac{r+I}{a+I}=\frac{I}{1+I}$ iff there is some $c+I \in \bar{A}$ such that $(r+I)(1+I)(c+$ $I)=I(a+I)(c+I)$, that is iff there is some $c \in A$ such that $r c \in I$. By part (b) this is iff $\frac{r}{a} \in A^{-1} I$, so $\operatorname{ker} \phi=A^{-1} I$. By the first isomorphism theorem the result follows.

