MATH3195/5195M  EXERCISE SHEET 2
SOLUTIONS

DUE: FEBRUARY 26, 2024

Problem 1. (a) Show that R[x,y]/ (x> — y?) is isomorphic to R[t?,t*]. [Hint: First homomorphism the-
orem. First show that f(x,y) = x> —y? is in the kernel of the map ¢ as defined in the lecture. In
order to see that (f(x,y)) is the full kernel, you may use the fact, that the kernel of ¢ is generated by
elements of the form x*y? — x™ "', where a,a’, b, b’ € IN. This fact can be proved using Grobner bases
methods]

(b) Is (x® — y?) a prime ideal in R[x, y]? Explain!

Solution. (a) Define ¢ : R[x,y] — R[t] by ¢(x) = *> and ¢(y) = t>. The image of ¢ is the subring
of R[t] generated by t? and #3, that is, the ring R[t?,#3]. Then by the first homomorphism theorem,
im(¢) = R[t?, 3] = R[x, y]/ ker ¢. It remains to determine ker ¢. The element f(x,y) = x> — y? isin ker ¢
since ¢(f(x,y)) = f(3,13) = (£*)® — (£*)? = 0. Now use the hint, which says that ker ¢ = (x%y? — xy",
where a,a’,b, b’ are some integers € IN). Assume that g(x,y) = x*y? — x*y" is in ker ¢, that means that
f2a+3b _ 2043 — (0, So we are looking for all integer linear combinations such that 2a + 3b = 24’ + 30/,
or2(a—a') = 3(b' — b). We may assume w.l.o.g. that a > a’ and hence b’ > b (if a = 4’ we would get
b = V' and the binomial would be 0). Since 2 —a’ and V' — b are integers and 2 and 3 are coprime, the
above equation implies that 3|(a — a’) and 2|(b' — b). Thus a — a’ = 3k, which implies that b’ — b = 2k
for some k € N~g. Thus any g(x,y) in ker ¢ is of the form x® +3kyt'=2k _ ya'yb" — ya'yb'=2k(y3k _ 42k)
Since 1% — y?* = (x*)F — (y2)F = (2% — y?) (23 x3y2k=1-1), one sees that f(x,y)|g(x,y), which means
that ¢(x,y) € (f(x,y)). Thus ker ¢ = (x® — y?) and the first isomorphism theorem shows that R[#?, 3] =
R[x,y]/ (x> = ).

(b) Since R[t?, 3] is a subring of the integral domain R[t], it is itself an integral domain (if we had
a(t?,£2)b(#?,13) = 0, then since both a,b € R[t], this implies that either a or b is 0). By (a) R[x,y]/ (x> —
y?) = R[t?, 3], hence R[x,y]/(x*> — y?) is an integral domain. By the theorem from the lecture (x> — y?)
is a prime ideal in R[x, y].

Problem 2. (a) Show that the ideal (x* — 5x% + 7x2 — 5x + 6, x* + 2x% + 1, x* — 2x3 + x% — 2x) in R[x] is
maximal.

(b) Let R be a ring such that every element satisfies x" = x for some n > 1 (here the integer n depends
on x). Show that every prime ideal in R is maximal.
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Solution. (a) If (f(x), g(x), h(x)) is anideal in K[x]|, where K is a field, then one can see that (f(x), g(x), h(x)) =
(ged(f, 8, h)).

We first calculate the factorizations of the polynomials f (x) =x* =53 +7x% —5x+6 = (x —2)(x —
3)(x2+1), g(x) = x* +2x2+1 = (x> +1)? and h(x) = x* —2x3 + x> — 2x = x(x — 2)(x®> + 1) into
irreducible polynomials in R[x] (use e.g. ratlonal root test). Thus we see that the ged of f (x),g(x),h(x)
is x> +1and (f(x),g(x),h(x)) = (x*+1). But % + 1 is irreducible in R[x], thus R[x]/ (x> + 1) is a field.
This means that (x* + 1) is a maximal ideal in R[x].

(b) Let p C R be a prime ideal and let x € R\p with x" = x for some n > 1. Since p is prime, R/p is an
integral domain and * # 0 is a nonzero-divisor. Then from the equation " — x = x(x" ! — 1) = 0 we
can cancel ¥ and obtain ¥~ = 1. But this means that ¥¥"2 = 1, thatis, ¥ 2is a multiplicative inverse
of . Thus any element ¥ # 0 € R/p is invertible, which implies that R/p is a field. But then (as shown
in the lecture) p is a maximal ideal.

Problem 3. (a) Consider K[x,y, z] and order all monomials of degree less than or equal to 3 with respect
to the following monomial orders: (i) <jex, (ii) <gegler, (iii) <), where A is a suitable linear form
A:R® — R.

(b) Determine leading monomial and coefficient of the polynomial f = x* + z° + x3z + yz* + x?y? with
respect to the momomial orders from (a).

Solution. (a) All monomials of degree < 2 are: 1,x,y, z, X2, xy, xz,yz,y?, z>.The orders are:

(1) 1 <lex Z <lex ZZ <lex y <lex yz <lex y2 <lex X <lex XZ <[ex Xy <lex X

(ﬁ) 1 <deglex z <deglex y <deglex X <deglex 2 <deglex yz <deglex yz <deglex Xz <deglex Xy <deglex x?
(iii) We have to choose a A with Q-linearly independent entries. Take e.g. A = (1,1/2,1/5). Then
T<)px<py<iz<px®<,xy<,y*><)xz<,yz<,z.

(b) (i) Imex(f) = x* and lcpee (f) = 1, (i) IMgegiex(f) = yz* and lcp,,(f) = 1, (ii) with A from above

Imy(f) = z° and Icy (f) = 1.

Problem 4. Let R be a ring. Show that R is local if and only if the nonunits of R form a maximal ideal.

Solution. Let R be local, that is, there is a unique maximal ideal m C R. Denote S = { nonunits of R}. We
have to show that S is an ideal. Lets, t € S. Then (s) + (t) is an ideal and clearly (s) C mand (t) C m. But
this implies thats —t € m. If s € Sand r € R, then rs € msince s € m, thus Sis anidealin R. If S C m,
then there would exist a unit in m (by definition of S). But this would mean that m = R, contradiction to
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the fact that m is a proper ideal of R.

For the other direction, assume that S is a maximal ideal in R.This means that S is a proper ideal of R.
Let M be an arbitrary maximal ideal of R. Then every element of M has to be a non-unit of R (since M is
supposed to be proper). This implies that M C S and by maximality, M = S.

Problem 5. Let I be an ideal of R and A be a multiplicatively-closed subset of R. Show that:

(a) A"l is anideal of A7'R;

(b) ¥ € A7'Iif and only if there is some b € A with xb € I;

() Al = A"'Rifand only if IN A # Q;

(d) localization commutes with quotients, that is
ATIR/AT =~ A Y(R/I), where A = {a+1:a € A}.

Solution. (a) Firstly, since 0 € I and 1 € A we have ¥ € A~!I. Now suppose that £,sb € A~'], then

r s __ rb—sa

o —p = " Sincer,s € I C Rwe have rb —sa € I, and since A is multiplicatively closed we have
ab € A. Thus L — 3 € A7'I. Finally if £ € A7'R then £ = I and again since tr € [ and ac € A we have
L1 e A7, so AT' I C A7IR.

b)If 3 € A1 then setting b = 1 gives the result. Conversely if xb € I then ;‘—Z € A7, but ;‘—Z = 2.

(c) Suppose Al = A7IR, then 1,1 = 1 € A7lI. By (b), this implies that there is some b € A
with1-b € I, ie. INA # @. Conversely if IN A # @ then choose a € INA. Now 2 € A~'], but
8—=21=141g50A =A"R

(d) Define ¢ : A”'R — A~'(R/I) by ¢(£) = . It is easy to check that ¢ is well-defined. This map is a
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homomorphism as given ~, $ € A~'R we have

o) -o(%55)

_ (rb+sa)+1
N ab+1
r+ Db+ +(s+I1)(a+1)
(a+1)(b+1)
r+l s+ 1

b+1

=4>(;) ¢(5)-
rs T

¢ (z5) =2 (%)
rs+1
ab+1
(r+1)(s+1)
(a+1)(b+1)
r+ls—|—l
a+1

(Z)e
Pp(14-18) = ¢ G)

1+1
1+1
=1z ( -

Also ¢ is clearly surjective, and ¢(L) = Zﬁ = 1+1 iff there is some c + I € A such that (r+ I)(1+I)(c +

I) = I(a+I)(c + I), that is iff there is some ¢ € A such that rc € I. By part (b) this is iff L € A~'I, so
ker ¢ = A By the first isomorphism theorem the result follows.




