MATH3195/M5195 EXERCISE SHEET 1 WITH SOLUTIONS

Problem 1. (1) Give an example of a ring that is not an integral domain. Give an example of an integral domain that is not a field. Can you find an example of a field that is not an integral domain?
(2) Consider the polynomial ring $\mathrm{Q}[x]$ and let $f(x)=-3+2 x-2 x^{2}+2 x^{3}+x^{4}$ and $g(x)=$ $x^{2}+1$. Does $g(x)$ divide $f(x)$? What is the greatest common divisor of $f(x)$ and $g(x)$?

Solution. (1) $6 \mathbb{Z}$ is a ring but not an integral domain. $K[x]$ is an integral domain but not a field.

In a field, all nonzero elements are invertible with respect to multiplication. So, every field is an integral domain.
(2) Yes, $f(x)=\left(x^{2}+2 x-3\right)\left(x^{2}+1\right)$, making $\operatorname{gcd}(f, g)=g$ in this case.

Problem 2. Let $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ with addition defined as $x \oplus y:=\min (x, y)$ and multiplication $x \odot y:=x+y$ for all $x, y \in \mathbb{R} \cup\{\infty\}$.
(a) Is \mathbb{T} a commutative ring? If yes, then show that all axioms hold, if no, then explain which axiom fails.
(b) Calculate $3 \odot(5 \oplus 7),(3 \oplus-3)^{2}$, and $(1 \oplus 8)^{4}$.
(c) Show that for any $x, y \in \mathbb{R} \cup\{\infty\}$, and any $k \in \mathbb{N}$, one has $(x \oplus y)^{k}=x^{k} \oplus y^{k}$.

Solution. For (a) note that $\min (x, \infty)=x$ for any $x \in \mathbb{T}$, which means that $0_{\mathbb{T}}=\infty$. The multiplicative unit is the "normal" additive unit, that is $1_{\mathbb{T}}=0$. The multiplication \odot is associative and commutative since the addition in $\mathbb{R} \cup\{\infty\}$ is associative and commutative. For the addition \oplus write out:
$a \oplus(b \oplus c)=a \oplus \min (b, c)=\min (a, \min (b, c))=\min (a, b, c)=\min (\min (a, b), c)=(a \oplus b) \oplus c$. Commutativity is clear, because $\min (a, b)=\min (b, a)$. Thus \oplus is associative, commutative and the neutral element is ∞. Distributivity comes from

$$
a \odot(b \oplus c)=a+\min (b, c)=\min (a+b, a+c)=(a+b) \oplus(a+c)=(a \odot b) \oplus(a \odot c)
$$

and the second equation follows trom commutativity of \mathbb{T}. However, not every element in \mathbb{T} has an inverse with respect to \oplus : let $x \in \mathbb{R}$, then if x were invertible, there would be a $y \in \mathbb{T}$ such that $x \oplus y=\min (x, y)=\infty$. But $\min (x, y)$ is either y (if $y \leq x$) or x (if $x<y \leq \infty$) for any

$y \in \mathbb{T}$.

(b) $3 \odot(5 \oplus 7)=3+\min (5,7)=8,(3 \oplus-3)^{2}=(3 \oplus-3) \odot(3 \oplus-3)=\min (3,-3)+$ $\min (3,-3)=-6$, and $(1 \oplus 8)^{4}=(1 \oplus 8) \odot(1 \oplus 8) \odot(1 \oplus 8) \odot(1 \oplus 8)=4 \min (1,8)=4$.
(c) First note that for any $x, y \in \mathbb{R} \cup\{\infty\}$, one has $k \min (x, y)=\min (k x, k y)$. Writing out $(x \oplus y)^{k}$ means $k \min (x, y)=\min (k x, k y)$. On the other hand, $x^{k} \oplus y^{k}=\min (k x, k y)$. So the two expressions are equal.

Problem 3. (a) Prove that if $\varphi: R \rightarrow S$ is a ring isomorphism then $\varphi^{-1}: S \rightarrow R$ is a ring homomorphism, and hence also an isomorphism.
(b) Let R be a ring and $I \subseteq R$ be an ideal and let $\varphi: R \rightarrow R / I$ be the canonical projection. Show that $\operatorname{ker} \varphi=I$ and φ is a ring homomorphism.

Solution. (a) Firstly if $\varphi\left(1_{R}\right)=1_{S}$ then $\varphi^{-1}\left(1_{S}\right)=1_{R}$. If now $s_{1}, s_{2} \in S$ then there exist a unique pair $r_{1}, r_{2} \in R$ with $\varphi\left(r_{1}\right)=s_{1}$ and $\varphi\left(r_{2}\right)=s_{2}$. Then

$$
\begin{aligned}
\varphi^{-1}\left(s_{1}+s_{2}\right) & =\varphi^{-1}\left(\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)\right) \\
& =\varphi^{-1}\left(\varphi\left(r_{1}+r_{2}\right)\right) \\
& =r_{1}+r_{2} \\
& =\varphi^{-1}\left(s_{1}\right)+\varphi^{-1}\left(s_{2}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
\varphi^{-1}\left(s_{1} s_{2}\right) & =\varphi^{-1}\left(\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)\right) \\
& =\varphi^{-1}\left(\varphi\left(r_{1} r_{2}\right)\right) \\
& =r_{1} r_{2} \\
& =\varphi^{-1}\left(s_{1}\right) \varphi^{-1}\left(s_{2}\right)
\end{aligned}
$$

Therefore φ^{-1} is a homomorphism. Now since φ is a bijection so too is φ^{-1}, and therefore φ^{-1} is an isomorphism.
(b) Clearly we have $\varphi\left(1_{R}\right)=1_{R}+I=1_{R / I}$. If $r_{1}, r_{2} \in R$ then

$$
\begin{aligned}
\varphi\left(r_{1}+r_{2}\right) & =\left(r_{1}+r_{2}\right)+I \\
& =\left(r_{1}+I\right)+\left(r_{2}+I\right) \\
& =\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi\left(r_{1} r_{2}\right) & =\left(r_{1} r_{2}\right)+I \\
& =\left(r_{1}+I\right)\left(r_{2}+I\right) \\
& =\varphi\left(r_{1}\right) \varphi\left(r_{2}\right) .
\end{aligned}
$$

Finally, since $0_{R / I}=I$ and $r+I=I$ iff $r \in I$ we see that $r \in \operatorname{ker} \varphi \Longleftrightarrow r+I=I \Longleftrightarrow r \in I$. Therefore $\operatorname{ker} \varphi=I$.

Problem 4. Let I, J and K be ideals of a ring R. Show that
(a) $I \cap J$ and $I J$ are ideals
(b) $I J \neq I \cap J$,
(c) $I(J+K)=I J+I K$,

Solution. (a) Since I and J are ideal, both contain 0 , and thus $0 \in I \cap J$, and $I \cap J \neq \varnothing$. Assume that $x, y \in I \cap J$ and $r \in R$. Since I and J are both ideals, it follows that $x \pm y$ and $r x$ are in I and in J. Thus $x \pm y$ and $r x$ are all in $I \cap J$. For the second assertion, note that $I J$ contains all finite sums of products of elements of I and J. Since $0 \in I$ and $0 \in J, 0=0 \cdot 0 \in I J$ and thus $I J \neq \varnothing$. Let now $\sum_{i=1}^{n} x_{i} y_{i}$ and $\sum_{j=1}^{m} x_{j}^{\prime} y_{j}^{\prime}$ with $x_{i}, x_{j}^{\prime} \in I$ and $y_{j}, y_{j}^{\prime} \in J$. Then $\sum_{i=1}^{n} x_{i} y_{i}+\sum_{j=1}^{m} x_{j}^{\prime} y_{j}^{\prime}$ is clearly in $I J$. If $r \in R$, then $r\left(\sum_{i=1}^{n} x_{i} y_{i}\right)=\sum_{i=1}^{n}\left(r x_{i}\right) y_{i}$ is also in $I J$. Thus $I J$ is an ideal.
(b) We need only show one example where the above is not true. Therefore consider $I=2 \mathbb{Z}, J=$ $4 \mathbb{Z} \subseteq \mathbb{Z}$. Then $I J=8 \mathbb{Z}$ but $I \cap J=4 \mathbb{Z}$.
(c) Choose $x \in I(J+K)$, then x can be written as $\sum_{i=1}^{n} r_{i}\left(s_{i}+t_{i}\right)$ for some $n \in \mathbb{N}, r_{i} \in I, s_{i} \in J$ and $t_{i} \in K$. But then

$$
\begin{aligned}
x & =\sum_{i=1}^{n}\left(r_{i} s_{i}+r_{i} t_{i}\right) \\
& =\left(\sum_{i=1}^{n} r_{i} s_{i}\right)+\left(\sum_{i=1}^{n} r_{i} t_{i}\right) \\
& \in I J+I K,
\end{aligned}
$$

so $I(J+K) \subseteq I J+I K$. Conversely if $y \in I J+I K$ then we can write $y=\sum_{i=1}^{n} r_{i} s_{i}+\sum_{j=1}^{m} r_{j}^{\prime} t_{j}$ for some $n, m \in \mathbb{N}, r_{i}, r_{j}^{\prime} \in I, s_{i} \in J$ and $t_{j} \in K$. Now

$$
\begin{aligned}
y & =\sum_{\substack{i \\
r_{i}=r_{j}^{\prime}}} r_{i}\left(s_{i}+t_{j}\right)+\sum_{\substack{i \\
r_{i} \neq r_{j}^{\prime} \forall j}} r_{i}\left(s_{i}+0\right)+\sum_{\substack{j \\
r_{j}^{\prime} \neq r_{i} \forall i}} r_{j}^{\prime}\left(0+t_{j}\right) \\
& \in I(J+K),
\end{aligned}
$$

so $I J+I K \subseteq I(J+K)$ and therefore $I J+I K=I(J+K)$.

Problem 5. Let I, J and K be ideals of a ring R. Recall that $(I: J)=\{r \in R: r J \subseteq I\}$. Show that
(a) $(I: J)$ is an ideal of R and $I \subseteq(I: J)$,
(b) $J \subseteq I$ implies that $(I: J)=R$,
(c) $I J \subseteq K$ if and only if $I \subseteq(K: J)$.

Solution. (a) Clearly $0 \in(I: J)$ since $0 J=\{0\} \subseteq I$. If $x_{1}, x_{2} \in(I: J)$ then for all $y \in J$ we have $x_{1} y, x_{2} y \in I$, therefore $x_{1} y-x_{2} y=\left(x_{1}-x_{2}\right) y \in I$. Hence $x_{1}-x_{2} \in(I: J)$. Finally if $x \in(I: J)$ and $r \in R$ then $r x J \subseteq r I \subseteq I$, hence $r x \in(I: J)$.
If $x \in I$ and $y \in J$ then $x y \in I$, since $J \subseteq R$. Therefore $x J \subseteq I$ and so $x \in(I: J)$ and $I \subseteq(I: J)$.
(b) If $J \subseteq I$ then $1 J \subseteq I$, and $1 \in(I: J)$. But by part (a), $(I: J)$ is an ideal so $(I: J)=R$.
(c) Suppose first that $I J \subseteq K$ and consider $x \in I$. Then for all $y \in J$ we have $x y \in I J \subseteq K$, so $x J \subseteq K$, i.e. $x \in(K: J)$ and $I \subseteq(K: J)$.
Conversely suppose $I \subseteq(K: \bar{J})$. Then $x y \in K$ for all $x \in I$ and $y \in J$. Hence all sums of the form $\sum_{i=1}^{n} x_{i} y_{i}$ with $n \in \mathbb{N}, x_{i} \in I$ and $y_{i} \in J$ are in K also, and hence $I J \subseteq K$.

Problem 6. Let R be a commutative ring and let $I, J \subseteq R$ be ideals.
(a) Let $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some positive integer $\left.n\right\}$. Show that \sqrt{I} is an ideal that contains I. [Note: \sqrt{I} is called the radical of I.]
(b) Prove that $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(c) Let $R=k[x, y]$. Show that $\sqrt{\left(x^{2}, y^{2}\right)}=(x, y)$ and that $\sqrt{\left(x^{2}\right) \cap\left(y^{2}\right)}=(x y)$.
(a) We have to show that \sqrt{I} is closed under addition and multiplication in R. Let $x \in \sqrt{I}$, then there exists an integer $n>0$ such that $x^{n} \in I$. If $r \in R$ then $(r x)^{n}=r^{n} x^{n}$ is contained in I (since I is an ideal in R). This means that $r x \in \sqrt{I}$. If y is another element in \sqrt{I}, then there exists a $k>0$ such that $y^{k} \in I$. Look at $(x+y)^{n+k}$. Use the binomial theorem:

$$
(x+y)^{n+k}=\sum_{i=0}^{n+k}\binom{n+k}{i} x^{i} y^{n+k-i}=\underbrace{y^{k} \sum_{i=0}^{n-1}\binom{n+k}{i} y^{n+k-k-i} x^{i}}_{\in I R}+\underbrace{x^{n} \sum_{i=n}^{n+k}\binom{n+k}{i} y^{n+k-i} x^{i-n}}_{\in I R}
$$

is contained in I. Thus $x+y \in \sqrt{I}$. Clearly $I \subseteq \sqrt{I}$, since for any $x \in I, x^{1} \in \sqrt{I}$.
(b) First take $x \in \sqrt{I \cap J}$. This means that there exist $n>0$ such that $x^{n} \in I$ and $x^{n} \in J$. This means that $x \in \sqrt{I}$ and $x \in \sqrt{J}$ and consequently in $\sqrt{I} \cap \sqrt{J}$. Now take x in the intersection of the two radicals. This means that there exist $k, l>0$ such that $x^{k} \in I$ and $x^{l} \in J$. Then x^{k+l} is contained in both I and J. Thus $x \in \sqrt{I \cap J}$.
(c) It is easy to see that $\sqrt{\left(x^{2}, y^{2}\right)} \supseteq(x, y)$. If $f(x, y)$ is an element in $k[x, y]$ such that for some $n>0, f^{n}=a x^{2}+b y^{2}$, then f cannot have a nonzero constant term. Thus f must be of the form
$f=c x+d y$ for some $c, d \in k[x, y]$. But this means that $f \in(x, y)$. For the second ideal use part (b): $\sqrt{\left(x^{2}\right) \cap\left(y^{2}\right)}=\sqrt{\left(x^{2}\right)} \cap \sqrt{\left(y^{2}\right)}$. Similar to the first ideal, one sees that $\sqrt{\left(x^{2}\right)}=(x)$ and $\sqrt{\left(y^{2}\right)}=(y)$, thus the ideal on the left hand side is $(x) \cap(y)$. Clearly $x y \in(x) \cap(y)$. For the other inclusion, if any $f(x, y) \in(x)$, then f is a multiple of x, i.e., $f(x, y)=x g(x, y)$ for some $g(x, y) \in k[x, y]$. But then $x g(x, y) \in(y)$ if and only if y is a factor of $x g(x, y)$, which means that y has to be a factor of $g(x, y)$. Thus $f(x, y) \in(x y)$ and we have shown the equality $(x) \cap(y)=(x y)$.

