
MATH3195/M5195 EXERCISE SHEET 1
WITH SOLUTIONS

Problem 1. (1) Give an example of a ring that is not an integral domain. Give an example of
an integral domain that is not a field. Can you find an example of a field that is not an
integral domain?

(2) Consider the polynomial ring Q[x] and let f (x) = −3 + 2x − 2x2 + 2x3 + x4 and g(x) =
x2 + 1. Does g(x) divide f (x)? What is the greatest common divisor of f (x) and g(x)?

Solution. (1) 6Z is a ring but not an integral domain. K[x] is an integral domain but not a
field.

In a field, all nonzero elements are invertible with respect to multiplication. So, every
field is an integral domain.

(2) Yes, f (x) = (x2 + 2x − 3)(x2 + 1), making gcd( f , g) = g in this case.

Problem 2. Let T = (R ∪ {∞},⊕,⊙) with addition defined as x ⊕ y := min(x, y) and multipli-
cation x ⊙ y := x + y for all x, y ∈ R ∪ {∞}.
(a) Is T a commutative ring? If yes, then show that all axioms hold, if no, then explain which

axiom fails.
(b) Calculate 3 ⊙ (5 ⊕ 7), (3 ⊕−3)2, and (1 ⊕ 8)4.
(c) Show that for any x, y ∈ R ∪ {∞}, and any k ∈ N, one has (x ⊕ y)k = xk ⊕ yk.

Solution. For (a) note that min(x, ∞) = x for any x ∈ T, which means that 0T = ∞. The
multiplicative unit is the “normal” additive unit, that is 1T = 0. The multiplication ⊙ is asso-
ciative and commutative since the addition in R ∪ {∞} is associative and commutative. For the
addition ⊕ write out:

a⊕ (b⊕ c) = a⊕min(b, c) = min(a, min(b, c)) = min(a, b, c) = min(min(a, b), c) = (a⊕ b)⊕ c .

Commutativity is clear, because min(a, b) = min(b, a). Thus ⊕ is associative, commutative and
the neutral element is ∞. Distributivity comes from

a ⊙ (b ⊕ c) = a + min(b, c) = min(a + b, a + c) = (a + b)⊕ (a + c) = (a ⊙ b)⊕ (a ⊙ c)

and the second equation follows trom commutativity of T. However, not every element in T

has an inverse with respect to ⊕: let x ∈ R, then if x were invertible, there would be a y ∈ T

such that x ⊕ y = min(x, y) = ∞. But min(x, y) is either y (if y ≤ x) or x (if x < y ≤ ∞) for any
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y ∈ T.
(b) 3 ⊙ (5 ⊕ 7) = 3 + min(5, 7) = 8, (3 ⊕ −3)2 = (3 ⊕ −3) ⊙ (3 ⊕ −3) = min(3,−3) +
min(3,−3) = −6, and (1 ⊕ 8)4 = (1 ⊕ 8)⊙ (1 ⊕ 8)⊙ (1 ⊕ 8)⊙ (1 ⊕ 8) = 4 min(1, 8) = 4.
(c) First note that for any x, y ∈ R∪{∞}, one has k min(x, y) = min(kx, ky). Writing out (x⊕ y)k

means k min(x, y) = min(kx, ky). On the other hand, xk ⊕ yk = min(kx, ky). So the two expres-
sions are equal.

Problem 3. (a) Prove that if φ : R → S is a ring isomorphism then φ−1 : S → R is a ring
homomorphism, and hence also an isomorphism.

(b) Let R be a ring and I ⊆ R be an ideal and let φ : R → R/I be the canonical projection. Show
that ker φ = I and φ is a ring homomorphism.

Solution. (a) Firstly if φ(1R) = 1S then φ−1(1S) = 1R. If now s1, s2 ∈ S then there exist a unique
pair r1, r2 ∈ R with φ(r1) = s1 and φ(r2) = s2. Then

φ−1(s1 + s2) = φ−1(φ(r1) + φ(r2))

= φ−1(φ(r1 + r2))

= r1 + r2

= φ−1(s1) + φ−1(s2).

Also

φ−1(s1s2) = φ−1(φ(r1)φ(r2))

= φ−1(φ(r1r2))

= r1r2

= φ−1(s1)φ−1(s2).

Therefore φ−1 is a homomorphism. Now since φ is a bijection so too is φ−1, and therefore φ−1

is an isomorphism.
(b) Clearly we have φ(1R) = 1R + I = 1R/I . If r1, r2 ∈ R then

φ(r1 + r2) = (r1 + r2) + I
= (r1 + I) + (r2 + I)
= φ(r1) + φ(r2),
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and

φ(r1r2) = (r1r2) + I
= (r1 + I)(r2 + I)
= φ(r1)φ(r2).

Finally, since 0R/I = I and r + I = I iff r ∈ I we see that r ∈ ker φ ⇐⇒ r + I = I ⇐⇒ r ∈ I.
Therefore ker φ = I.

Problem 4. Let I, J and K be ideals of a ring R. Show that
(a) I ∩ J and I J are ideals
(b) I J ̸= I ∩ J,
(c) I(J + K) = I J + IK,

Solution. (a) Since I and J are ideal, both contain 0, and thus 0 ∈ I ∩ J, and I ∩ J ̸= ∅. Assume
that x, y ∈ I ∩ J and r ∈ R. Since I and J are both ideals, it follows that x ± y and rx are in I and
in J. Thus x ± y and rx are all in I ∩ J. For the second assertion, note that I J contains all finite
sums of products of elements of I and J. Since 0 ∈ I and 0 ∈ J, 0 = 0 · 0 ∈ I J and thus I J ̸= ∅.
Let now ∑n

i=1 xiyi and ∑m
j=1 x′jy

′
j with xi, x′j ∈ I and yj, y′j ∈ J. Then ∑n

i=1 xiyi + ∑m
j=1 x′jy

′
j is clearly

in I J. If r ∈ R, then r (∑n
i=1 xiyi) = ∑n

i=1(rxi)yi is also in I J. Thus I J is an ideal.
(b) We need only show one example where the above is not true. Therefore consider I = 2Z, J =
4Z ⊆ Z. Then I J = 8Z but I ∩ J = 4Z.
(c) Choose x ∈ I(J + K), then x can be written as ∑n

i=1 ri(si + ti) for some n ∈ N, ri ∈ I, si ∈ J
and ti ∈ K. But then

x =
n

∑
i=1

(risi + riti)

=

(
n

∑
i=1

risi

)
+

(
n

∑
i=1

riti

)
∈ I J + IK,

so I(J + K) ⊆ I J + IK. Conversely if y ∈ I J + IK then we can write y = ∑n
i=1 risi + ∑m

j=1 r′jtj for
some n, m ∈ N, ri, r′j ∈ I, si ∈ J and tj ∈ K. Now

y = ∑
i

ri=r′j

ri(si + tj) + ∑
i

ri ̸=r′j∀j

ri(si + 0) + ∑
j

r′j ̸=ri∀i

r′j(0 + tj)

∈ I(J + K),

so I J + IK ⊆ I(J + K) and therefore I J + IK = I(J + K).
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Problem 5. Let I, J and K be ideals of a ring R. Recall that (I : J) = {r ∈ R : rJ ⊆ I}. Show that
(a) (I : J) is an ideal of R and I ⊆ (I : J),
(b) J ⊆ I implies that (I : J) = R,
(c) I J ⊆ K if and only if I ⊆ (K : J).

Solution. (a) Clearly 0 ∈ (I : J) since 0J = {0} ⊆ I. If x1, x2 ∈ (I : J) then for all y ∈ J we have
x1y, x2y ∈ I, therefore x1y − x2y = (x1 − x2)y ∈ I. Hence x1 − x2 ∈ (I : J). Finally if x ∈ (I : J)
and r ∈ R then rxJ ⊆ rI ⊆ I, hence rx ∈ (I : J).
If x ∈ I and y ∈ J then xy ∈ I, since J ⊆ R. Therefore xJ ⊆ I and so x ∈ (I : J) and I ⊆ (I : J).
(b) If J ⊆ I then 1J ⊆ I, and 1 ∈ (I : J). But by part (a), (I : J) is an ideal so (I : J) = R.
(c) Suppose first that I J ⊆ K and consider x ∈ I. Then for all y ∈ J we have xy ∈ I J ⊆ K, so
xJ ⊆ K, i.e. x ∈ (K : J) and I ⊆ (K : J).
Conversely suppose I ⊆ (K : J). Then xy ∈ K for all x ∈ I and y ∈ J. Hence all sums of the form
∑n

i=1 xiyi with n ∈ N, xi ∈ I and yi ∈ J are in K also, and hence I J ⊆ K.

Problem 6. Let R be a commutative ring and let I, J ⊆ R be ideals.
(a) Let

√
I = {r ∈ R : rn ∈ I for some positive integer n}. Show that

√
I is an ideal that contains

I. [Note:
√

I is called the radical of I.]
(b) Prove that

√
I ∩ J =

√
I ∩

√
J.

(c) Let R = k[x, y]. Show that
√
(x2, y2) = (x, y) and that

√
(x2) ∩ (y2) = (xy).

(a) We have to show that
√

I is closed under addition and multiplication in R. Let x ∈
√

I, then
there exists an integer n > 0 such that xn ∈ I. If r ∈ R then (rx)n = rnxn is contained in I (since
I is an ideal in R). This means that rx ∈

√
I. If y is another element in

√
I, then there exists a

k > 0 such that yk ∈ I. Look at (x + y)n+k. Use the binomial theorem:

(x + y)n+k =
n+k

∑
i=0

(
n + k

i

)
xiyn+k−i = yk

n−1

∑
i=0

(
n + k

i

)
yn+k−k−ixi

︸ ︷︷ ︸
∈IR

+ xn
n+k

∑
i=n

(
n + k

i

)
yn+k−ixi−n

︸ ︷︷ ︸
∈IR

is contained in I. Thus x + y ∈
√

I. Clearly I ⊆
√

I, since for any x ∈ I, x1 ∈
√

I.
(b) First take x ∈

√
I ∩ J. This means that there exist n > 0 such that xn ∈ I and xn ∈ J. This

means that x ∈
√

I and x ∈
√

J and consequently in
√

I ∩
√

J. Now take x in the intersection of
the two radicals. This means that there exist k, l > 0 such that xk ∈ I and xl ∈ J. Then xk+l is
contained in both I and J. Thus x ∈

√
I ∩ J.

(c) It is easy to see that
√
(x2, y2) ⊇ (x, y). If f (x, y) is an element in k[x, y] such that for some

n > 0, f n = ax2 + by2, then f cannot have a nonzero constant term. Thus f must be of the form
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f = cx + dy for some c, d ∈ k[x, y]. But this means that f ∈ (x, y). For the second ideal use
part (b):

√
(x2) ∩ (y2) =

√
(x2) ∩

√
(y2). Similar to the first ideal, one sees that

√
(x2) = (x)

and
√
(y2) = (y), thus the ideal on the left hand side is (x) ∩ (y). Clearly xy ∈ (x) ∩ (y). For

the other inclusion, if any f (x, y) ∈ (x), then f is a multiple of x, i.e., f (x, y) = xg(x, y) for
some g(x, y) ∈ k[x, y]. But then xg(x, y) ∈ (y) if and only if y is a factor of xg(x, y), which
means that y has to be a factor of g(x, y). Thus f (x, y) ∈ (xy) and we have shown the equality
(x) ∩ (y) = (xy).


