MATHM5195 EXERCISE SHEET 5-THE LAST ONE!

DUE: MAY 6, 2024

Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be two algebraic sets, and let

$$
X \times Y=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathbb{A}^{n+m}:\left(x_{1}, \ldots, x_{n}\right) \in X,\left(y_{1}, \ldots, y_{m}\right) \in Y\right\}
$$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.
(b) If both X and Y are irreducible, then is $X \times Y$ irreducible?

Problem 2. (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
(b) Give an example of a maximal ideal J in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $V(J)=\varnothing$. Why does this not contradict the Nullstellensatz?

Problem 3. (a) Determine the cardinality of $V(f)$ where $f(z)=z^{5}-z^{4}+z^{3}-1$ is in $\mathbb{C}[z]$ and compare it to $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[z] /\left\langle z^{5}-z^{4}+z^{3}-1\right\rangle\right)$ (dimension here means vector space dimension).
(b) Same question for $V\left(x-2 y, y^{2}-x^{3}+x^{2}+x\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y] /\left\langle x-2 y, y^{2}-x^{3}+x^{2}+\right.\right.$ $x\rangle$. Geometric interpretation?
(c) Same question for $V\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y, z] /\left\langle x^{3}-y z, y^{2}-x z, z^{2}-\right.\right.$ $\left.x^{2} y\right\rangle$. (Hint: Recall that $\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[t])=\infty$ and so also for any \mathbb{C}-module containing $\mathbb{C}[t]$)

Problem 4. (a) Fix a monomial order on \mathbb{N}^{3} and let $K=\mathbb{C}$. Are the polynomials $P_{1}=$ $x^{3}-y z, P_{2}=x^{2} y-z^{3}$ and $P_{3}=y^{2}-z^{2}$ a Gröbner basis with respect to this order?
(b) If not, then complete the polynomials to a Gröbner basis.
(c) Does the system of equations $P_{1}(x, y, z)=P_{1}(x, y, z)=P_{2}(x, y, z)=0$ have a solution? (Try to answer this question without actually calculating one!)

