MATH3195/M5195 EXERCISE SHEET 3

Problem 1. (a) Let $R=\mathbb{Q}[[x, y]]$ and let $J=\left\langle x y+y^{3}, x+x^{2} y, x y+3 y, x^{4}-5 y^{2}+x^{2} y\right\rangle$ be an ideal in R. Show that J is minimally generated by two elements in R.
(b) Let $R=K[t]$ and consider $M=K\left[t, t^{-1}\right]$ as R-module and let $I=t R$ be an ideal in R. Show that $M=I M$ but $M \neq 0$. Why does this example not contradict Nakayama's lemma?

Problem 2. Prove the first isomorphism theorem for modules.

Problem 3. Prove the 3×3-lemma: Let R be a ring. Assume that

is a commutative diagram of R-modules and all columns and the middle row is exact. Show that the top row is exact if and only if the bottom row is exact.

Problem 4. (Localisation of a module) Let R be a ring and $A \subset R$ be multiplicatively closed. Let M be an R-module. Assume we know that $(m, a) \sim(n, b)$ if and only if $m b c=$ nac for some $c \in A$ defines an equivalence relation on $M \times A$. (Note: recall the definition of an equivalence relation.)
(a) Writing $A^{-1} M$ for the set of equivalence classes of \sim, and $\frac{m}{a}$ for the class containing (m, a), show that the operation

$$
\frac{m}{a}+\frac{n}{b}=\frac{b m+a n}{a b}
$$

is well defined and hence that $A^{-1} M$ is an abelian group.
(b) By defining an appropriate multiplication rule, show that $A^{-1} M$ has the structure of an $A^{-1} R$-module.

Problem 5. Let R be a ring and $A \subset R$ be multiplicatively closed.
(a) Suppose that $\phi: M \rightarrow N$ is a homomorphism of R modules. Show ϕ induces an $A^{-1} R$-homomorphism $A^{-1} M \rightarrow A^{-1} N$.
(b) Suppose $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of R-modules. Show that $0 \rightarrow A^{-1} L \rightarrow A^{-1} M \rightarrow A^{-1} N \rightarrow 0$, with the induced maps from (i), is an exact sequence of $A^{-1} R$-modules. (Remark: This means that localization is an exact functor from the category of R-modules to the category of $A^{-1} R$-modules.)

