COMMUTATIVE RINGS AND ALGEBRAIC GEOMETRY

DUE: FEBRUARY 18, 2025

Exercise Sheet 1

NOTE: SUBMIT YOUR SOLUTIONS TO GRADESCOPE BY FEBRUARY 18.

Problem 1. Revision (have a look at the Rings and Polynomials MATH2027 notes, or equivalent course!): Make sure that you can answer the following:

- (1) Give an example of a ring that is not an integral domain. Give an example of an integral domain that is not a field. Can you find an example of a field that is not an integral domain?
- (2) Consider the polynomial ring $\mathbb{Q}[x]$ and let $f(x) = -3 + 2x 2x^2 + 2x^3 + x^4$ and $g(x) = x^2 + 1$. Does g(x) divide f(x)? What is the greatest common divisor of f(x) and g(x)?

Problem 2. Let $\mathbb{T} = (\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ with addition defined as $x \oplus y := \min(x, y)$ and multiplication $x \odot y := x + y$ for all $x, y \in \mathbb{R} \cup \{\infty\}$.

- (a) Is \mathbb{T} a commutative ring? If yes, then show that all axioms hold, if no, then explain which axiom fails.
- (b) Calculate $3 \odot (5 \oplus 7)$, $(3 \oplus -3)^2$, and $(1 \oplus 8)^4$.
- (c) Show that for any $x, y \in \mathbb{R} \cup \{\infty\}$, and any $k \in \mathbb{N}$, one has $(x \oplus y)^k = x^k \oplus y^k$.

Problem 3. Let *I*, *J* and *K* be ideals of a ring *R*. Show that

(a) $I \cap (J + K) = I \cap J + I \cap K$ if $J \subseteq I$ or $K \subseteq I$, (b) if *I* and *J* are *coprime*, i.e. I + J = R, then $IJ = I \cap J$. **Problem 4.** Let *R* be a commutative ring and let $I, J \subseteq R$ be ideals.

- (a) Let $\sqrt{I} = \{r \in R : r^n \in I \text{ for some positive integer } n\}$. Show that \sqrt{I} is an ideal that contains *I*. [Note: \sqrt{I} is called the *radical of I*.]
- (b) Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- (c) Let R = k[x, y]. Show that $\sqrt{(x^2, y^2)} = (x, y)$ and that $\sqrt{(x^2) \cap (y^2)} = (xy)$.

Problem 5. Let *R* be a ring. Show that *R* is local if and only if the nonunits of *R* form a maximal ideal.

- **Problem 6.** (a) Show that the ideal $(x^4 5x^3 + 7x^2 5x + 6, x^4 + 2x^2 + 1, x^4 2x^3 + x^2 2x)$ in $\mathbb{R}[x]$ is maximal.
- (b) Let *R* be a ring such that every element satisfies $x^n = x$ for some n > 1 (here the integer *n* depends on *x*). Show that every prime ideal in *R* is maximal.