Problem 5. Let R be a ring and $A \subset R$ be a multiplicatively closed subset.
(a) Suppose that $\phi: M \rightarrow N$ is an R-mod. homomorphism.

Show that ϕ induces an $A^{-1} R$ hams. $A^{-1} M \rightarrow A^{-1} N$.
Define $\quad \psi: A^{-1} \mu \rightarrow A^{-1} N$

$$
a^{-1} m \longmapsto a^{-1} \phi(m)
$$

- 4 is vell-defined: If $a_{1}^{-1} m_{1}=a_{2}^{-1} m_{2}$, then we have $\psi\left(a_{1}^{-1} m_{1}\right)=a_{1}^{-1} \phi\left(m_{1}\right) \stackrel{*}{=} \phi\left(a_{1}^{-1} m_{1}\right)$ since ϕ is on R-mod

$$
\begin{aligned}
& =\phi\left(a_{2}^{-1} m_{2}\right) \\
& =a_{2}^{-1} \phi\left(m_{2}\right) \\
& =4\left(a_{2}^{-1} m_{2}\right) .
\end{aligned}
$$

- (i) $4\left(a_{1}^{-1} m_{1}+a_{2}^{-1} m_{2}\right)=4\left(a_{1}^{-1} a_{2}^{-1}\left(a_{2} m_{1}+a_{1} m_{2}\right)\right)$

$$
\begin{aligned}
& =\psi\left(\left(a_{1} a_{2}\right)^{-1}\left(a_{2} m_{1}+a_{1} m_{2}\right)\right) \\
& =\left(a_{1} a_{2}\right)^{-1} \phi\left(a_{2} m_{1}+a_{1} m_{2}\right) \\
& =\left(a_{1} a_{2}\right)^{-1}\left(a_{2} \phi\left(m_{1}\right)+a_{1} \phi\left(m_{2}\right)\right) \\
& =a_{1}^{-1} \phi\left(m_{1}\right)+a_{2}^{-1} \phi\left(m_{2}\right) \\
& =\psi\left(a_{1}^{-1} m_{1}\right)+\psi\left(a_{2}^{-1} m_{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{array}{rlrl}
r \psi\left(a^{-1} m\right) & =r\left(a^{-1} \phi(m)\right) \\
& =\left(r a^{-1}\right) \phi(m) & \\
& =\left(a^{-1} r\right) \phi(m) & \text { we always use } \\
& =a^{-1}(r \phi(m)) \quad \phi \text { is on R-mod } \\
& =a^{-1} \phi(r m) & \text { homs. and } \\
& =4\left(a^{-1}(r m)\right) \quad \text { the module str. } \\
& =\psi\left(r\left(a^{-1} m\right)\right) \quad \text { in } R .
\end{array}
$$

(b) Suppose $0 \rightarrow L \xrightarrow{\phi_{1}} M \xrightarrow{\phi_{2}} N \rightarrow 0$ is on exact sequence of R-modules. Show that
$0 \rightarrow A^{-1} L \xrightarrow{H_{1}} A^{-1} M \xrightarrow{4 /} A^{-1} N \rightarrow 0$ with induced mops from (i) is on exact sequence of $A^{-1} R$ mod.

- ψ_{1} is injective :

$$
\begin{aligned}
& \psi_{1}\left(a_{1}^{-1} l_{1}\right) \\
&=\psi_{1}\left(a_{2}^{-1} l_{2}\right) \\
& \Rightarrow a_{1}^{-1} \phi_{1}\left(l_{1}\right)=a_{2}^{-1} \phi_{1}\left(l_{2}\right) \\
& \Rightarrow \quad \phi_{1}\left(a_{1}^{-1} l_{1}\right)=\phi_{1}\left(a_{2}^{-1} l_{2}\right)
\end{aligned}
$$

$\Rightarrow \quad a_{1}^{-1} l_{1}=a_{2}^{-1} l_{2}$ since ϕ_{1} is injective

- 4_{2} is subjective

For every $a^{-1} n \in A^{-1} N$, there exists $a^{-1} n \in A^{-1} M$ such that

$$
\psi_{2}\left(a^{-1} n\right)=a^{-1} n
$$

since $\psi_{2}\left(a^{-1} n\right)=a^{-1} \phi_{2}(m)=a^{-1} n$ because ϕ_{2} is surjective.

- $\operatorname{Ker} \psi_{2}=\operatorname{In} Y_{1}$
(i) $\operatorname{Ker} H_{2} \subseteq \operatorname{In} H_{1}$

Take $a^{-1} n \in \operatorname{Ker} T_{2}$

$$
\begin{aligned}
& \Rightarrow \quad 4_{2}\left(a^{-1} m\right)=0 \\
& \Rightarrow \quad a^{-1} \phi_{2}(m)=0 \\
& \Rightarrow \quad \phi_{2}\left(a^{-1} m\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a^{-1} n \in \operatorname{Kr} \phi_{2} \\
& \Rightarrow a^{-1} n \in \operatorname{In} \phi_{1} \text { since } \operatorname{Ker} \phi_{2}=\operatorname{In} \phi_{1} \\
& \Rightarrow a^{-1} n=\phi_{1}\left(a_{*}^{-1} l\right) \text { for some } a_{*}^{-1} l \in A^{-1} L \\
& \Rightarrow a^{-1} n=a_{*}^{-1} \phi_{1}(l) \\
& \Rightarrow a^{-1} m=\psi_{1}\left(a_{*}^{-1} l\right) \\
& \Rightarrow a^{-1} n \in \operatorname{In} \psi_{1}
\end{aligned}
$$

(ii) $\operatorname{In} \psi_{1} \subseteq \operatorname{Ker} \psi_{2}$

Take $a^{-1} m \in \operatorname{In} Y$,

$$
\begin{aligned}
& \Rightarrow \quad \psi_{1}\left(a_{*}^{-1} l\right)=a^{-1} m \text { for some } a_{*}^{-1} l \\
& \Rightarrow \quad a_{*}^{-1} \phi_{1}(l)=a^{-1} m \\
& \Rightarrow \quad \phi_{1}\left(a_{*}^{-1} l\right)=a^{-1} m \\
& \Rightarrow \quad a^{-1} m \in \operatorname{In} \phi_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a^{-1} n \in \operatorname{Ker} \phi_{2} \text { since } \operatorname{Ker} \phi_{2}=\operatorname{In} \phi_{1} \\
& \Rightarrow \quad \phi_{2}\left(a^{-1} n\right)=0 \\
& \Rightarrow a^{-1} \phi_{2}(n)=0 \\
& \Rightarrow \quad \not_{2}\left(a^{-1} n\right)=0 \\
& \Rightarrow a^{-1} n \in \operatorname{Ker} \psi_{2}
\end{aligned}
$$

Problem 3:

Assume the first two rows are exact:

cover $f_{i}=C_{i}$ since colums are exact;

Thus, re have $0 \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow 0$ exact.

$$
\Rightarrow 0 \rightarrow k \operatorname{kr} g_{1} \rightarrow \mathrm{kerg}_{2} \rightarrow \mathrm{ker} g_{3} \rightarrow 0
$$

her $g_{i}=A ;$ by the exactness of colons;
Ger $g_{i}=\operatorname{In} f_{i}=A_{i}$ since f_{i} 's ore infective
Thus, we have
$0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$ exact!

